Question
Question: Let \(\frac{d}{dx}F(x) = \frac{e^{\sin x}}{x}\), x > 0. If \(\int_{1}^{4}{\frac{2e^{\sin x^{2}}}{x}d...
Let dxdF(x)=xesinx, x > 0. If ∫14x2esinx2dx= f(k) – f(1) then one of the possible value of k is:
A
2
B
4
C
8
D
16
Answer
16
Explanation
Solution
Let I = ∫14x2esinx2dx= ∫14x22xesinx2
Put x2 = y, then 2x dx = dy
xy11416
\ I = ∫116yesinydy = |F(y)|∫116= F(16) –F(1)
thus one of the possible value of k = 16