Solveeit Logo

Question

Question: Let \(\frac{d}{dx}F(x) = \frac{e^{\sin x}}{x}\), x > 0. If \(\int_{1}^{4}{\frac{2e^{\sin x^{2}}}{x}d...

Let ddxF(x)=esinxx\frac{d}{dx}F(x) = \frac{e^{\sin x}}{x}, x > 0. If 142esinx2xdx\int_{1}^{4}{\frac{2e^{\sin x^{2}}}{x}dx}= f(k) – f(1) then one of the possible value of k is:

A

2

B

4

C

8

D

16

Answer

16

Explanation

Solution

Let I = 142esinx2xdx\int_{1}^{4}{\frac{2e^{\sin x^{2}}}{x}dx}= 142xesinx2x2\int_{1}^{4}\frac{2xe^{\sin x^{2}}}{x^{2}}

Put x2 = y, then 2x dx = dy

x14y116\begin{matrix} x & 1 & 4 \\ y & 1 & 16 \end{matrix}

\ I = 116esinyy\int_{1}^{16}\frac{e^{\sin y}}{y}dy = |F(y)|116\int_{1}^{16}{}= F(16) –F(1)

thus one of the possible value of k = 16