Question
Question: Let \(\frac{d}{dx}\) F(x) = \(\left( \frac{e^{\sin x}}{x} \right)\), x > 0 If \(\int e^{\sin x^{3}}d...
Let dxd F(x) = (xesinx), x > 0 If ∫esinx3dx=F(k)–F(1), then one of the possible values of k is –
A
15
B
16
C
63
D
64
Answer
64
Explanation
Solution
dxdF(x) = xesinx, x > 0
On integrating both sides of above equation, we get
F(x) = ∫xesinxdx …(1)
Also, ∫14x3esinx3dx = ∫14x33x2esinx3dx
= F (k) – F (1)
Let x3 = z Ž 3x2 dx = dz
Ž ∫164zesinzdz = F(k) – F(1)
Using equation (1), we get
[F(z)]164 = F(k) – F(1)
Ž F(64) – F(1) = F(k) – F(1)
Ž k = 64.
Hence (4) is the correct answer.