Solveeit Logo

Question

Question: Let \(\frac{d}{dx}\) F(x) = \(\left( \frac{e^{\sin x}}{x} \right)\), x > 0 If \(\int e^{\sin x^{3}}d...

Let ddx\frac{d}{dx} F(x) = (esinxx)\left( \frac{e^{\sin x}}{x} \right), x > 0 If esinx3dx=F(k)F(1)\int e^{\sin x^{3}}dx = F(k) – F(1), then one of the possible values of k is –

A

15

B

16

C

63

D

64

Answer

64

Explanation

Solution

ddx\frac{d}{dx}F(x) = esinxx\frac{e^{\sin x}}{x}, x > 0

On integrating both sides of above equation, we get

F(x) = esinxx\int_{}^{}\frac{e^{\sin x}}{x}dx …(1)

Also, 143xesinx3\int_{1}^{4}{\frac{3}{x}e^{\sin x^{3}}}dx = 143x2x3esinx3\int_{1}^{4}{\frac{3x^{2}}{x^{3}}e^{\sin x^{3}}}dx

= F (k) – F (1)

Let x3 = z Ž 3x2 dx = dz

Ž 164esinzz\int_{1}^{64}\frac{e^{\sin z}}{z}dz = F(k) – F(1)

Using equation (1), we get

[F(z)]164\rbrack_{1}^{64} = F(k) – F(1)

Ž F(64) – F(1) = F(k) – F(1)

Ž k = 64.

Hence (4) is the correct answer.