Solveeit Logo

Question

Mathematics Question on Ellipse

Let x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, where a>ba>b, be an ellipse whose eccentricity is 12\frac{1}{\sqrt{2}} and the length of the latus rectum is 14\sqrt{14}. Then the square of the eccentricity of x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 is:

A

3

B

72\frac{7}{2}

C

32\frac{3}{2}

D

52\frac{5}{2}

Answer

32\frac{3}{2}

Explanation

Solution

We are given:

  • eccentricity e=12e = \frac{1}{\sqrt{2}}
  • Length of the latus rectum L=14L = \sqrt{14}

We know the formula for the latus rectum of an ellipse is:

L=2b2aL = \frac{2b^2}{a}

From the problem, we are given L=14L = \sqrt{14}, so:

2b2a=14\frac{2b^2}{a} = \sqrt{14}

Thus,

2b^2 = a \sqrt{14} \tag{1}

Next, use the relationship for the eccentricity ee of an ellipse:

e=1b2a2=12e = \sqrt{1 - \frac{b^2}{a^2}} = \frac{1}{\sqrt{2}}

Squaring both sides:

e2=1b2a2=12e^2 = 1 - \frac{b^2}{a^2} = \frac{1}{2}

This implies:

b2a2=12\frac{b^2}{a^2} = \frac{1}{2}

Substitute this into equation (1):

2(a22)=a142 \left(\frac{a^2}{2}\right) = a \sqrt{14} a2=a14a^2 = a \sqrt{14}

Thus:

a=14a = \sqrt{14} 1

Substitute a=14a = \sqrt{14} into b2=a22b^2 = \frac{a^2}{2}:

b2=142=7b^2 = \frac{14}{2} = 7

Now, compute the square of the eccentricity:

e2=1b2a2=1714=714=12e^2 = 1 - \frac{b^2}{a^2} = 1 - \frac{7}{14} = \frac{7}{14} = \frac{1}{2}

Thus, the square of the eccentricity is 32\frac{3}{2}.