Question
Mathematics Question on Circle
Let dxdy=bx+cy+aax−by+a, where a, b, c are constants, represent a circle passing through the point (2, 5). Then the shortest distance of the point (11, 6) from this circle is
A
10
B
8
C
7
D
5
Answer
8
Explanation
Solution
Let dxdy=bx+cy+aax−by+a
= bxdy+cydy+ady=axdx–bydx+adx
= cy dy + a dy – ax dx – a dx + b(xdy+ydx) = 0
=c ∫y dy+a ∫x dx−a ∫dx+b ∫d(xy)=0
=2cy2+ay−2ax2−ax+bxy=k
= ax2–cy2\+2ax–2ay–2bxy=k
Above equation is circle
⇒a=–candb=0
ax2+ay2\+2ax–2ay=k
⇒x2+y2\+2x–2y=λ
[λ=ak]
Passes through (2,5)
4+25+4–10=λ⇒λ=23
Circle ≡x2+y2\+2x–2y–23=0
Centre (–1,1)
r=(−1)2+12+23=5
Shortest distance of (11,6)
=122+52−5
= 13–5
= 8
Hence, the correct option is (B): 8