Solveeit Logo

Question

Mathematics Question on Circle

Let dydx=axby+abx+cy+a\frac{dy}{dx} = \frac{ax-by+a}{bx+cy+a}, where a, b, c are constants, represent a circle passing through the point (2, 5). Then the shortest distance of the point (11, 6) from this circle is

A

10

B

8

C

7

D

5

Answer

8

Explanation

Solution

Let dydx=axby+abx+cy+a\frac{dy}{dx} = \frac{ax-by+a}{bx+cy+a}

= bx  dy+cy  dy+a  dy=ax  dxby  dx+a  dxbx\;dy + cy\; dy + a \;dy = ax \;dx – by\; dx + a\; dx

= cycy dydy + aa dydyaxax dxdxaa dxdx + b(xdy+ydx)b(x dy + y dx) = 00

=cc y∫y dydy+aa x∫x dxdxaa dx∫dx+bb d(xy)=0∫d(xy)=0

=cy22+ayax22ax+bxy=k\frac{cy^2}{2}+ay−\frac{ax^2}{2}−ax+bxy=k

= ax2cy2\+2ax2ay2bxy=kax^2 – cy^2 \+ 2ax – 2ay – 2bxy = k

Above equation is circle

a=  c  and  b=0⇒ a = –\;c \;and \;b = 0

ax2+ay2\+2ax2ay=kax^2 + ay^2 \+ 2ax – 2ay = k

x2+y2\+2x2y=λ⇒ x^2 + y^2 \+ 2x – 2y = λ

[λ=ka]\bigg[λ=\frac{k}{a}\bigg]

Passes through (2,5)(2, 5)

4+25+410=λλ=234 + 25 + 4 – 10 = λ⇒λ = 23

Circle x2+y2\+2x2y23=0≡x^2 + y^2 \+ 2x – 2y – 23 = 0

Centre (1,1)(–1, 1)

r=(1)2+12+23=5r=\sqrt{(−1)^2+1^2+23=5}

Shortest distance of (11,6)(11, 6)

=122+525\sqrt{12^2+5^2}−5

= 13513 – 5

= 88

Hence, the correct option is (B): 88