Solveeit Logo

Question

Mathematics Question on Sequence and series

Let 1x1,1x2,....,1xn(x10\frac{1}{x_1} , \frac{1}{x^2} ,...., \frac{1}{x_n} (x_1 \neq 0 for i=1,2,...,n)i = 1 , 2 , ... , n) be in A.P. such that x1=4x_1 = 4 and x21=20x_{21} = 20. If n is the least positive integer for which xn>50x_n > 50, then i=1n(1xi)\displaystyle\sum^n_{i = 1} \left( \frac{1}{x_i}\right) is equal to

A

18\frac{1}{8}

B

3

C

138\frac{13}{8}

D

134\frac{13}{4}

Answer

134\frac{13}{4}

Explanation

Solution

Given:
AP:1x1,1x2,1xnAP: \frac{1}{x_{1}}, \frac{1}{x_{2}}, \dots \frac{1}{x_{n}}
And x1=4,x21=20x_{1}=4, x_{21}=20
So, 14+20d=120\frac{1}{4}+20d=\frac{1}{20}
20d=12014=152020 d=\frac{1}{20}-\frac{1}{4}=\frac{1-5}{20}
20d=420\Rightarrow 20 d=\frac{-4}{20}
d=420×2\Rightarrow d=\frac{-4}{20 \times 2}
d=1100\Rightarrow d=\frac{-1}{100}
Now, 1xn24\frac{1}{x_{n}}\,24
n=25n=25
Therefore, i=125(1xi)=252(2×141100×24)\displaystyle\sum_{i=1}^{25}\left(\frac{1}{x_{i}}\right)=\frac{25}{2}\left(2 \times \frac{1}{4}-\frac{1}{100} \times 24\right)
=134=\frac{13}{4}