Question
Question: Let \(f:R \rightarrow R\) be such that \(f(1) = 3\)and \(f^{'}(1) = 6\). Then ( \lim_{x \rightarrow ...
Let f:R→R be such that f(1)=3and f′(1)=6. Then ( \lim_{x \rightarrow 0}\left{ \frac{f(1 + x)}{f(1)} \right}^{\frac{1}{x}} ) equals
A
1
B
e1/2
C
e2
D
e3
Answer
e2
Explanation
Solution
limx→0{f(1)f(1+x)}x1
=elimx→0x1[logf(1+x)−logf(1)]=elimx→01f′(1+x)/f(1+x) =ef(1)f′(1)=e6/3=e2.