Solveeit Logo

Question

Question: Let $f:R \rightarrow R$ be a function such that $f(2)=4$ and $f'(2)=1$. Then, the value of $\lim_{x ...

Let f:RRf:R \rightarrow R be a function such that f(2)=4f(2)=4 and f(2)=1f'(2)=1. Then, the value of limx2x2f(2)4f(x)x2\lim_{x \to 2} \frac{x^2f(2)-4f(x)}{x-2} is equal to:

A

12

B

16

C

4

D

8

Answer

12

Explanation

Solution

The limit is of the form 00\frac{0}{0}. Using L'Hopital's Rule: limx2x2f(2)4f(x)x2=limx22xf(2)4f(x)1\lim_{x \to 2} \frac{x^2f(2)-4f(x)}{x-2} = \lim_{x \to 2} \frac{2xf(2)-4f'(x)}{1} Substituting x=2x=2, f(2)=4f(2)=4, f(2)=1f'(2)=1: =2(2)(4)4(1)=164=12= 2(2)(4) - 4(1) = 16 - 4 = 12