Solveeit Logo

Question

Mathematics Question on Relations and functions

Let for xRx \in R f(x)=x+x2 and g(x)={x,x<0\x2,x0f(x)=\frac{x+|x|}{2} \text { and } g(x)=\begin{cases}x, & x<0 \\\x^2, & x \geq 0\end{cases}

Then area bounded by the curve y=(fg)(x)y=(f \circ g)(x) and the lines y=0,2yx=15y=0,2 y-x=15 is equal to

Answer

The correct answer is 72.

2y−x=15
A=0∫3​(2x+15​−x2)dx+21​×215​×15
4x2​+215x​−3x3​∣∣​03​+4225​
=49​+245​−9+4225​=499−36+225​
=4288​=72