Question
Mathematics Question on binomial distribution
Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6 x , to be the greatest for x = 3/2, the least value of n is n 0. If k is the ratio of the coefficient of x 6 to the coefficient of x 3, then k + n0 is equal to :
Answer
(3+6x)n=3n(1+2x)n
If T 9 is numerically greatest term
∴T8≤T9≥T10
nC73n–7(6x)7≤nC83n–8(6x)8≥nC93n–9(6x)9
⇒ (n−7)!7!n!9≤(n−8)!8!n!3⋅(6x)≥(n−9)!9!n!(6x)2
⇒ (n−7)(n−8)9≤(n−8)818(23)≥9.83649
72≤27(n–7) and 27≥9(n–8)
329≤n and n≤11
∴n0=10
For(3+6x)10
Tr+1=10Cr 310–r(6x)r
For coeff. of x6 r=6⇒10C634.66
For coeff. ofx3 r=3⇒10C337.63
∴ k=10C310C6⋅37⋅6334⋅66=6!4!10!10!7!3!⋅8
⇒k=14 ∴k+n0=24