Solveeit Logo

Question

Mathematics Question on Operations on Real Numbers

Let for some real numbers αα and ββ, a=αiβa = α – iβ. If the system of equations 4ix\+(1+i)y=04ix \+ (1 + i) y = 0 and 8(cosx2π3+i  sin2π3)x+aˉy=08\bigg(cosx\frac{2π}{3}+i\;sin\frac{2π}{3}\bigg)x+\bar ay=0 has more than one solution, then αβ\frac{α}{β} is equal to

A

2+3-2 + \sqrt3

B

232 – \sqrt3

C

2+32 + \sqrt3

D

23-2 – \sqrt3

Answer

232 – \sqrt3

Explanation

Solution

Given a=αiβa = α – iβ and

4ix\+(1+i)y=0(i)4ix \+ (1 + i)y = 0 …(i)

8(cosx2π3+i  sin2π3)x+aˉy=0....(ii)8\bigg(cosx\frac{2π}{3}+i\;sin\frac{2π}{3}\bigg)x+\bar ay=0....(ii)

By (i) xy=(1+i)4i\frac{x}{y}=\frac{−(1+i)}{4i}…(iii)

By (ii) xy=aˉ8(12+3t2)\frac{x}{y}=\frac{−\bar a}{8\bigg(\frac{−1}{2}+\frac{\sqrt{3t}}{2}\bigg)}….(iv)

Now by (iii)(iii) and (iv)(iv)

1+i4i=aˉ4(1+3i)\frac{1+i}{4i}=\frac{\bar a}{4(−1+\sqrt3i)}

aˉ=(31)+(3+1)i⇒\bar a=(\sqrt3–1)+(\sqrt3+1)i

α+iβ=(31)+(3+1)i⇒α+iβ=(\sqrt3–1)+(\sqrt3+1)i

αβ=313+1=23∴\frac{α}{β}=\frac{\sqrt3−1}{\sqrt3+1}=2–\sqrt3