Solveeit Logo

Question

Mathematics Question on Geometric Progression

Let for n = 1, 2, …, 50, Sn be the sum of the infinite geometric progression whose first term is n2 and whose common ratio is
1(n+1)2\frac{1}{(n+1)^2} . Then the value of
126+n=150(Sn+2n+1n1)\frac{1}{26} + \sum_{n=1}^{50} \left(S_n+\frac{2}{n+1}-n-1 \right)
is equal to ________.

Answer

The corrrect answer is 41651
Sn=n211(n+1)2=n(n+1)2n+2=(n2+1)2n+2S_n=\frac{n2}{1−\frac{1}{(n+1)^2}}=\frac{n(n+1)^2}{n+2}=(n2+1)−\frac{2}{n+2}
Now
126+n=150(Sn+2n+1n1)\frac{1}{26} + \sum_{n=1}^{50} \left(S_n+\frac{2}{n+1}-n-1 \right)
126+n=150(n2n+2(1n+11n+2))\frac{1}{26} + \sum_{n=1}^{50} \left( n^2 - n + 2 \left( \frac{1}{n+1} - \frac{1}{n+2} \right) \right)
126+50×51×101650×512+2(12152)\frac{1}{26} + \frac{50 \times 51 \times 101}{6} - \frac{50 \times 51}{2} + 2 \left( \frac{1}{2} - \frac{1}{52} \right)
= 1 + 25 × 17 (101 – 3)
= 41651