Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Let for aa10a \ne a_{1} \ne 0, f(x)=ax2+bx+c,g9x)=a1x2+b1x+c1f\left(x\right) = ax^{2} + bx + c, g^{9}x) = a_{1}x^{2} + b_{1}x + c_{1} and p(x)=f(x)g(x)p\left(x\right) = f\left(x\right) - g\left(x\right). If p(x)=0p\left(x\right) = 0 only for x=1x = -1 and p(2)=2p\left(-2\right) = 2, then the value of p(2)p\left(2\right) is :

A

3

B

9

C

6

D

18

Answer

18

Explanation

Solution

P(x)=0P(x) = 0 f(x)=g(x)\Rightarrow\quad f\left(x\right) = g\left(x\right) ax2+bx+c=a1x2+b1x+C,\Rightarrow\quad ax^{2} + bx + c = a_{1}x^{2} + b_{1}x + C, (aa1)x2+(bb1)x+(cc1)=0.\Rightarrow\quad\left(a - a_{1}\right) x^{2} + \left(b - b_{1}\right) x + \left(c - c_{1}\right) = 0. It has only one solution x=1x = - 1 bb1=aa1+cc1....(1)\Rightarrow\quad b - b_{1} = a - a_{1} + c - c_{1} \quad\quad.... \left(1\right) vertex (1,0)bb12(aa1)=1bb1=2(aa1)....(2)\left(-1, 0\right) \quad\Rightarrow\quad \frac{b-b_{1}}{2\left(a-a_{1}\right)} = -1\quad\Rightarrow\quad b - b_{1} = 2\left(a - a_{1}\right) \quad\quad.... \left(2\right) f(2)g(2)=2\Rightarrow\quad f\left(-2\right) - g\left(-2\right) = 2 4a2b+c4a1+2b1c1=2\Rightarrow\quad4a - 2b + c - 4a_{1} + 2b_{1} - c_{1} = 2 4(aa1)2(bb1)+(cc1)=2....(3)\Rightarrow\quad4\left(a - a_{1}\right) - 2\left(b - b_{1}\right) + \left(c - c_{1}\right) = 2\quad\quad .... \left(3\right) by (1),(2)\left(1\right), \left(2\right) and (3)(aa1)=(cc1)=12(bb1)=2\left(3\right) \left(a - a_{1}\right) = \left(c - c_{1}\right) = \frac{1}{2} \left(b-b_{1}\right) = 2 Now P(2)=f(2)g(2)\quad P\left(2\right) = f\left(2\right) - g\left(2\right) =4(aa1)+2(bb1)+(cc1)= 4 \left(a - a_{1}\right) + 2 \left(b - b_{1}\right) + \left(c - c_{1}\right) =8+8+2=18= 8 + 8 + 2 = 18