Question
Mathematics Question on Fundamental Theorem of Calculus
Let for a differentiable function f:(0,∞)→R, f(x)−f(y)≥loge(yx)+x−y,∀x,y∈(0,∞).
Then ∑n=120f′(n21) is equal to ____.
Answer
Given: f(x)−f(y)≥lnx−lny+x−y
Rewriting:
f(x)−f(y)=x−yx−y⋅x−yx+y
- Case 1: Let x→y
limy→x−f′(x1)≥x1+1...(1)
- Case 2: Let x=y
limy→x+f′(x+)≤x1+1...(2)
Thus, f′(x)=x+11.
Now, substitute f′(x1)=n+1 into the sum:
∑n=120f′(x1)=∑n=120(n2+1)
Calculating:
∑n=120n2=620⋅21⋅41=2870,∑n=1201=20
Therefore:
∑n=120f′(x1)=2870+20=2890