Solveeit Logo

Question

Mathematics Question on Fundamental Theorem of Calculus

Let for a differentiable function f:(0,)Rf : (0, \infty) \rightarrow \mathbb{R}, f(x)f(y)loge(xy)+xy,  x,y(0,).f(x) - f(y) \geq \log_e \left( \frac{x}{y} \right) + x - y, \quad \forall \; x, y \in (0, \infty).
Then n=120f(1n2)\sum_{n=1}^{20} f'\left(\frac{1}{n^2}\right) is equal to ____.

Answer

Given: f(x)f(y)lnxlny+xyf(x) - f(y) \geq \ln x - \ln y + x - y

Rewriting:

f(x)f(y)=xyxyx+yxyf(x) - f(y) = \frac{\sqrt{x} - \sqrt{y}}{x - y} \cdot \frac{\sqrt{x} + \sqrt{y}}{x - y}

- Case 1: Let xyx \to y
limyxf(1x)1x+1...(1)\lim_{y \to x^-} f' \left( \frac{1}{x} \right) \geq \frac{1}{x} + 1 \quad \text{...(1)}

- Case 2: Let xyx \neq y

limyx+f(x+)1x+1...(2)\lim_{y \to x^+} f' \left( x^+ \right) \leq \frac{1}{x} + 1 \quad \text{...(2)}
Thus, f(x)=1x+1f'(x) = \frac{1}{x+1}.

Now, substitute f(1x)=n+1f' \left( \frac{1}{x} \right) = n + 1 into the sum:

n=120f(1x)=n=120(n2+1)\sum_{n=1}^{20} f' \left( \frac{1}{x} \right) = \sum_{n=1}^{20} \left( n^2 + 1 \right)

Calculating:

n=120n2=2021416=2870,n=1201=20\sum_{n=1}^{20} n^2 = \frac{20 \cdot 21 \cdot 41}{6} = 2870, \quad \sum_{n=1}^{20} 1 = 20

Therefore:

n=120f(1x)=2870+20=2890\sum_{n=1}^{20} f' \left( \frac{1}{x} \right) = 2870 + 20 = 2890