Solveeit Logo

Question

Question: Let $f(n) = n^2 + 100$. Compute the remainder when $\underbrace{f(f(\cdots f(f(1))\cdots))}_{2025 \t...

Let f(n)=n2+100f(n) = n^2 + 100. Compute the remainder when f(f(f(f(1))))2025 fs\underbrace{f(f(\cdots f(f(1))\cdots))}_{2025 \text{ } f's} is divided by 10410^4.

Answer

3101

Explanation

Solution

Let the given function be f(n)=n2+100f(n) = n^2 + 100. We need to compute the remainder when f(f(f(f(1))))2025 fs\underbrace{f(f(\cdots f(f(1))\cdots))}_{2025 \text{ } f's} is divided by 10410^4. Let x0=1x_0 = 1. Let xk+1=f(xk)=xk2+100x_{k+1} = f(x_k) = x_k^2 + 100. We need to find x2025(mod104)x_{2025} \pmod{10^4}.

Let's compute the first few terms modulo 10410^4: x0=1x_0 = 1 x1=f(x0)=f(1)=12+100=101x_1 = f(x_0) = f(1) = 1^2 + 100 = 101 x2=f(x1)=f(101)=1012+100=(100+1)2+100=(1002+21001+12)+100x_2 = f(x_1) = f(101) = 101^2 + 100 = (100+1)^2 + 100 = (100^2 + 2 \cdot 100 \cdot 1 + 1^2) + 100 x2=10000+200+1+100=10301x_2 = 10000 + 200 + 1 + 100 = 10301 x2301(mod10000)x_2 \equiv 301 \pmod{10000}

x3=f(x2)=x22+100x_3 = f(x_2) = x_2^2 + 100 x33012+100(mod10000)x_3 \equiv 301^2 + 100 \pmod{10000} 3012=(300+1)2=3002+23001+12=90000+600+1=90601301^2 = (300+1)^2 = 300^2 + 2 \cdot 300 \cdot 1 + 1^2 = 90000 + 600 + 1 = 90601 x390601+100(mod10000)x_3 \equiv 90601 + 100 \pmod{10000} x390701(mod10000)x_3 \equiv 90701 \pmod{10000} x3701(mod10000)x_3 \equiv 701 \pmod{10000}

x4=f(x3)=x32+100x_4 = f(x_3) = x_3^2 + 100 x47012+100(mod10000)x_4 \equiv 701^2 + 100 \pmod{10000} 7012=(700+1)2=7002+27001+12=490000+1400+1=491401701^2 = (700+1)^2 = 700^2 + 2 \cdot 700 \cdot 1 + 1^2 = 490000 + 1400 + 1 = 491401 x4491401+100(mod10000)x_4 \equiv 491401 + 100 \pmod{10000} x4491501(mod10000)x_4 \equiv 491501 \pmod{10000} x41501(mod10000)x_4 \equiv 1501 \pmod{10000}

Let's observe the pattern of xk(mod10000)x_k \pmod{10000} for k1k \ge 1: x1101(mod10000)x_1 \equiv 101 \pmod{10000} x2301(mod10000)x_2 \equiv 301 \pmod{10000} x3701(mod10000)x_3 \equiv 701 \pmod{10000} x41501(mod10000)x_4 \equiv 1501 \pmod{10000}

It appears that xk100ak+1(mod10000)x_k \equiv 100a_k + 1 \pmod{10000} where aka_k follows a pattern. a1=1a_1 = 1 a2=3a_2 = 3 a3=7a_3 = 7 a4=15a_4 = 15 This suggests ak=2k1a_k = 2^k - 1.

Let's prove this by induction. Base case: For k=1k=1, a1=211=1a_1 = 2^1 - 1 = 1. This holds for x1=101x_1 = 101. Inductive step: Assume xk100(2k1)+1(mod10000)x_k \equiv 100(2^k-1) + 1 \pmod{10000} for some k1k \ge 1. Then xk+1=xk2+100x_{k+1} = x_k^2 + 100. Substitute the assumed form of xkx_k: xk+1(100(2k1)+1)2+100(mod10000)x_{k+1} \equiv (100(2^k-1) + 1)^2 + 100 \pmod{10000} Using (A+B)2=A2+2AB+B2(A+B)^2 = A^2 + 2AB + B^2: xk+1(100(2k1))2+2100(2k1)1+12+100(mod10000)x_{k+1} \equiv (100(2^k-1))^2 + 2 \cdot 100(2^k-1) \cdot 1 + 1^2 + 100 \pmod{10000} xk+110000(2k1)2+200(2k1)+1+100(mod10000)x_{k+1} \equiv 10000(2^k-1)^2 + 200(2^k-1) + 1 + 100 \pmod{10000} Since 10000(2k1)210000(2^k-1)^2 is a multiple of 1000010000, it becomes 0(mod10000)0 \pmod{10000}. xk+1200(2k1)+101(mod10000)x_{k+1} \equiv 200(2^k-1) + 101 \pmod{10000} xk+12002k200+101(mod10000)x_{k+1} \equiv 200 \cdot 2^k - 200 + 101 \pmod{10000} xk+110022k99(mod10000)x_{k+1} \equiv 100 \cdot 2 \cdot 2^k - 99 \pmod{10000} xk+11002k+199(mod10000)x_{k+1} \equiv 100 \cdot 2^{k+1} - 99 \pmod{10000} xk+1100(2k+11)+1(mod10000)x_{k+1} \equiv 100(2^{k+1}-1) + 1 \pmod{10000} This completes the induction. So, xk100(2k1)+1(mod10000)x_k \equiv 100(2^k-1) + 1 \pmod{10000} for k1k \ge 1.

We need to compute x2025(mod10000)x_{2025} \pmod{10000}. Using the formula for k=2025k=2025: x2025100(220251)+1(mod10000)x_{2025} \equiv 100(2^{2025}-1) + 1 \pmod{10000} x202510022025100+1(mod10000)x_{2025} \equiv 100 \cdot 2^{2025} - 100 + 1 \pmod{10000} x20251002202599(mod10000)x_{2025} \equiv 100 \cdot 2^{2025} - 99 \pmod{10000}

To evaluate this, we need to find 22025(mod100)2^{2025} \pmod{100}. We can use the Chinese Remainder Theorem since 100=4×25100 = 4 \times 25.

  1. Modulo 4: Since 202522025 \ge 2, 220252^{2025} is divisible by 44. So, 220250(mod4)2^{2025} \equiv 0 \pmod 4.

  2. Modulo 25: We use Euler's totient theorem. ϕ(25)=25(11/5)=20\phi(25) = 25(1 - 1/5) = 20. So, 2201(mod25)2^{20} \equiv 1 \pmod{25}. Now, we find the exponent 2025(mod20)2025 \pmod{20}: 2025=20×101+52025 = 20 \times 101 + 5. So, 22025=(220)10125110125(mod25)2^{2025} = (2^{20})^{101} \cdot 2^5 \equiv 1^{101} \cdot 2^5 \pmod{25} 25=322^5 = 32. 2202532(mod25)2^{2025} \equiv 32 \pmod{25} 220257(mod25)2^{2025} \equiv 7 \pmod{25}.

Now we have a system of congruences: Let N=22025N = 2^{2025}. N0(mod4)N \equiv 0 \pmod 4 N7(mod25)N \equiv 7 \pmod{25}

From the second congruence, N=25k+7N = 25k + 7 for some integer kk. Substitute this into the first congruence: 25k+70(mod4)25k + 7 \equiv 0 \pmod 4 k+30(mod4)k + 3 \equiv 0 \pmod 4 (since 251(mod4)25 \equiv 1 \pmod 4 and 73(mod4)7 \equiv 3 \pmod 4) k3(mod4)k \equiv -3 \pmod 4 k1(mod4)k \equiv 1 \pmod 4 So k=4m+1k = 4m + 1 for some integer mm. Substitute kk back into the expression for NN: N=25(4m+1)+7=100m+25+7=100m+32N = 25(4m+1) + 7 = 100m + 25 + 7 = 100m + 32. Therefore, 2202532(mod100)2^{2025} \equiv 32 \pmod{100}.

Finally, substitute this result back into the expression for x2025x_{2025}: x20251002202599(mod10000)x_{2025} \equiv 100 \cdot 2^{2025} - 99 \pmod{10000} Let 22025=100m+322^{2025} = 100m + 32. x2025100(100m+32)99(mod10000)x_{2025} \equiv 100(100m + 32) - 99 \pmod{10000} x202510000m+320099(mod10000)x_{2025} \equiv 10000m + 3200 - 99 \pmod{10000} x2025320099(mod10000)x_{2025} \equiv 3200 - 99 \pmod{10000} x20253101(mod10000)x_{2025} \equiv 3101 \pmod{10000}

The remainder is 3101.