Solveeit Logo

Question

Question: Let f(n) = $\frac{4n + \sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}$ and $\lim_{n\to\infty} (\frac{f(1)+f...

Let f(n) = 4n+4n212n+1+2n1\frac{4n + \sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}} and limn(f(1)+f(2)+....f(n)1+2+3+....+n)\lim_{n\to\infty} (\frac{f(1)+f(2)+....f(n)}{\sqrt{1}+\sqrt{2}+\sqrt{3}+....+\sqrt{n}}) is equal to α\alpha then the value of 27α227\alpha^2 is:

Answer

243/2

Explanation

Solution

Solution Overview:

  1. Simplify f(n):
    Write

    f(n)=4n+4n212n+1+2n1.f(n)=\frac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}.

    Multiply numerator and denominator by 2n+12n1\sqrt{2n+1}-\sqrt{2n-1} noting that (2n+1+2n1)(2n+12n1)=2(\sqrt{2n+1}+\sqrt{2n-1})(\sqrt{2n+1}-\sqrt{2n-1})=2. This gives

    f(n)=12[(4n+4n21)(2n+12n1)].f(n)=\frac{1}{2}\Bigl[ \Bigl(4n+\sqrt{4n^2-1}\Bigr)\Bigl(\sqrt{2n+1}-\sqrt{2n-1}\Bigr)\Bigr].
  2. Express in Telescoping Form:
    Recognize that

    4n21=(2n1)(2n+1).\sqrt{4n^2-1}=\sqrt{(2n-1)(2n+1)}.

    With some algebraic manipulation, the expression simplifies to

    f(n)=12[(2n+1)2n+1(2n1)2n1].f(n)=\frac{1}{2}\Bigl[(2n+1)\sqrt{2n+1}-(2n-1)\sqrt{2n-1}\Bigr].

    This is a telescoping term.

  3. Sum the Series:
    Sum f(n)f(n) from n=1n=1 to NN:

    SN=n=1Nf(n)=12[(2N+1)2N+1(211)1]=12[(2N+1)2N+11].S_N=\sum_{n=1}^N f(n)=\frac{1}{2}\Bigl[(2N+1)\sqrt{2N+1} - (2\cdot1-1)\sqrt{1}\Bigr]=\frac{1}{2}\Bigl[(2N+1)\sqrt{2N+1}-1\Bigr].
  4. Estimate the Denominator:
    The denominator DN=1+2++ND_N=\sqrt{1}+\sqrt{2}+\cdots+\sqrt{N} for large NN can be approximated by the integral:

    DN0Nxdx=23N3/2.D_N\approx \int_0^N \sqrt{x}\,dx=\frac{2}{3}N^{3/2}.
  5. Compute the Limit:
    For large NN,

    SN12(2N2N)=2N3/2.S_N\sim\frac{1}{2}(2N\cdot\sqrt{2N})=\sqrt{2}\,N^{3/2}.

    Therefore,

    α=limNSNDN2N3/223N3/2=322.\alpha=\lim_{N\to\infty}\frac{S_N}{D_N}\sim \frac{\sqrt{2}\,N^{3/2}}{\frac{2}{3}N^{3/2}}=\frac{3\sqrt{2}}{2}.
  6. Final Calculation:
    Finally, compute

    27α2=27(322)2=27924=27184=2792=2432.27\alpha^2=27\Bigl(\frac{3\sqrt{2}}{2}\Bigr)^2=27\cdot\frac{9\cdot2}{4}=27\cdot\frac{18}{4}=\frac{27\cdot9}{2}=\frac{243}{2}.

Answer:
2432\frac{243}{2}

Subject: Mathematics (NCERT Class XII, Chapter: Sequences and Series, Topic: Telescoping Series)
Difficulty Level: Medium
Question Type: fill_in_the_blank