Solveeit Logo

Question

Question: Let f,g and h be continuous function on [0,a] such that f(x) = f(a–x), g(x) = – g(a–x) and 3h(x) – ...

Let f,g and h be continuous function on [0,a] such that

f(x) = f(a–x), g(x) = – g(a–x) and 3h(x) – 4h(a – x) = 5.

Then 0af(x)\int_{0}^{a}{f(x)} g(x) h(x) dx =

A

5/4

B

3/4

C

1

D

0

Answer

0

Explanation

Solution

0af(x)\int_{0}^{a}{f(x)}g(x) h(x) dx

= 0af(ax)\int_{0}^{a}{f(a - x)} g(a – x) h(a–x) dx

= – 0af(x)\int_{0}^{a}{f(x)} g(x) [3h(x)54]\left\lbrack \frac{3h(x) - 5}{4} \right\rbrackdx

= – 340af(x)\frac{3}{4}\int_{0}^{a}{f(x)}g(x) h(x) dx + 540af(x)\frac{5}{4}\int_{0}^{a}{f(x)}g(x) dx

740af(x)\frac{7}{4}\int_{0}^{a}{f(x)} g(x) h(x) dx = 540af(x)\frac{5}{4}\int_{0}^{a}{f(x)}g(x) dx = 0

{f(a – x) g(a – x) = – f(x) g(x)}

So 0af(x)\int_{0}^{a}{f(x)}g(x) h(x) dx = 0