Solveeit Logo

Question

Question: Let \(F(\alpha) = \begin{bmatrix} \cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 ...

Let F(α)=[cosαsinα0sinαcosα0001]F(\alpha) = \begin{bmatrix} \cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}. ThenF(α).F(α)F(\alpha).F(\alpha') is equal to

A

F(αα)F(\alpha\alpha')

B

F(α/α)F(\alpha/\alpha')

C

F(α+α)F(\alpha + \alpha')

D

F(αα)F(\alpha - \alpha')

Answer

F(α+α)F(\alpha + \alpha')

Explanation

Solution

We have F(α)=[cosαsinα0sinαcosα0001]F(\alpha) = \begin{bmatrix} \cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix},

{\cos\alpha}^{'} & - {\sin\alpha}^{'} & 0 \\ {\sin\alpha}^{'} & {\cos\alpha}^{'} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ $$F(\alpha).F(\alpha^{'}) = \begin{bmatrix} \cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} {\cos\alpha}^{'} & - {\sin\alpha}^{'} & 0 \\ {\sin\alpha}^{'} & {\cos\alpha}^{'} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\alpha + \alpha^{'}) & - \sin(\alpha + \alpha^{'}) & 0 \\ \sin(\alpha + \alpha^{'}) & \cos(\alpha + \alpha^{'}) & 0 \\ 0 & 0 & 1 \end{bmatrix} = F(\alpha + \alpha^{'})$$