Question
Question: Let \(F(\alpha) = \begin{bmatrix} \cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 ...
Let F(α)=cosαsinα0−sinαcosα0001. ThenF(α).F(α′) is equal to
A
F(αα′)
B
F(α/α′)
C
F(α+α′)
D
F(α−α′)
Answer
F(α+α′)
Explanation
Solution
We have F(α)=cosαsinα0−sinαcosα0001,
{\cos\alpha}^{'} & - {\sin\alpha}^{'} & 0 \\ {\sin\alpha}^{'} & {\cos\alpha}^{'} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ $$F(\alpha).F(\alpha^{'}) = \begin{bmatrix} \cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} {\cos\alpha}^{'} & - {\sin\alpha}^{'} & 0 \\ {\sin\alpha}^{'} & {\cos\alpha}^{'} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\alpha + \alpha^{'}) & - \sin(\alpha + \alpha^{'}) & 0 \\ \sin(\alpha + \alpha^{'}) & \cos(\alpha + \alpha^{'}) & 0 \\ 0 & 0 & 1 \end{bmatrix} = F(\alpha + \alpha^{'})$$