Solveeit Logo

Question

Question: Let $f:A \rightarrow Bf(x)=\frac{x+a}{bx^2+cx+2}$, where A represent domain set and B represent rang...

Let f:ABf(x)=x+abx2+cx+2f:A \rightarrow Bf(x)=\frac{x+a}{bx^2+cx+2}, where A represent domain set and B represent range set of function f(x),a,b,cR,f(1)=0f(x), a, b, c \in R, f(-1)=0 and y=1y=1 is an asymptote of y=f(x)y=f(x) and y=g(x)y=g(x) is the inverse of f(x)f(x). Area bounded between the curves y=f(x)y=f(x) and y=g(x)y=g(x) is

Answer

3\sqrt{5}-8\ln\left(\frac{1+\sqrt{5}}{2}\right)

Explanation

Solution

The problem asks for the area bounded between the curves y=f(x)y=f(x) and y=g(x)y=g(x), where g(x)g(x) is the inverse of f(x)f(x). The area bounded by a function and its inverse is twice the area bounded by the function and the line y=xy=x, provided the function is monotonic.

First, let's determine the function f(x)f(x). Given f(x)=x+abx2+cx+2f(x)=\frac{x+a}{bx^2+cx+2}.

  1. Condition 1: f(1)=0f(-1)=0 Substituting x=1x=-1 into f(x)f(x): f(1)=1+ab(1)2+c(1)+2=0f(-1) = \frac{-1+a}{b(-1)^2+c(-1)+2} = 0 a1bc+2=0\frac{a-1}{b-c+2} = 0 For this fraction to be zero, the numerator must be zero (and the denominator non-zero). So, a1=0    a=1a-1=0 \implies a=1. The function becomes f(x)=x+1bx2+cx+2f(x) = \frac{x+1}{bx^2+cx+2}.

  2. Condition 2: y=1y=1 is an asymptote of y=f(x)y=f(x) For a rational function f(x)=P(x)Q(x)f(x) = \frac{P(x)}{Q(x)}, if the degree of the numerator P(x)P(x) is less than the degree of the denominator Q(x)Q(x), the horizontal asymptote is y=0y=0. If the degree of P(x)P(x) is equal to the degree of Q(x)Q(x), the horizontal asymptote is y=leading coefficient of P(x)leading coefficient of Q(x)y = \frac{\text{leading coefficient of } P(x)}{\text{leading coefficient of } Q(x)}. If b0b \neq 0, the degree of the denominator (22) is greater than the degree of the numerator (11). In this case, the horizontal asymptote would be y=0y=0. However, the problem states that y=1y=1 is an asymptote. This implies that the degree of the numerator and denominator must be the same. This can only happen if the coefficient of x2x^2 in the denominator is zero, i.e., b=0b=0. With b=0b=0, the function becomes f(x)=x+1cx+2f(x) = \frac{x+1}{cx+2}. Now, the degree of the numerator (1) is equal to the degree of the denominator (1). The horizontal asymptote is y=coefficient of x in numeratorcoefficient of x in denominator=1cy = \frac{\text{coefficient of } x \text{ in numerator}}{\text{coefficient of } x \text{ in denominator}} = \frac{1}{c}. Given that the asymptote is y=1y=1, we have 1c=1    c=1\frac{1}{c}=1 \implies c=1.

So, we have found a=1a=1, b=0b=0, and c=1c=1. The function is f(x)=x+1x+2f(x) = \frac{x+1}{x+2}.

Next, we need to find the intersection points of y=f(x)y=f(x) and y=xy=x. The area bounded by y=f(x)y=f(x) and y=g(x)y=g(x) is 2x1x2f(x)xdx2 \int_{x_1}^{x_2} |f(x)-x| dx, where x1x_1 and x2x_2 are the intersection points. Set f(x)=xf(x)=x: x+1x+2=x\frac{x+1}{x+2} = x x+1=x(x+2)x+1 = x(x+2) x+1=x2+2xx+1 = x^2+2x x2+x1=0x^2+x-1 = 0 Using the quadratic formula, x=1±124(1)(1)2(1)x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)} x=1±1+42x = \frac{-1 \pm \sqrt{1+4}}{2} x=1±52x = \frac{-1 \pm \sqrt{5}}{2} Let x1=152x_1 = \frac{-1-\sqrt{5}}{2} and x2=1+52x_2 = \frac{-1+\sqrt{5}}{2}.

Now, let's check the monotonicity of f(x)f(x): f(x)=x+1x+2=(x+2)1x+2=11x+2f(x) = \frac{x+1}{x+2} = \frac{(x+2)-1}{x+2} = 1 - \frac{1}{x+2}. f(x)=0(1)(x+2)2=1(x+2)2f'(x) = 0 - (-1)(x+2)^{-2} = \frac{1}{(x+2)^2}. Since f(x)>0f'(x) > 0 for all x2x \neq -2, the function f(x)f(x) is strictly increasing on its domain. This confirms that the area calculation method is valid.

To determine the sign of f(x)xf(x)-x in the interval (x1,x2)(x_1, x_2), let's pick a test point, say x=0x=0. f(0)=0+10+2=12f(0) = \frac{0+1}{0+2} = \frac{1}{2}. At x=0x=0, y=xy=x is 00. Since f(0)=1/2>0f(0) = 1/2 > 0, and x=0x=0 is between x11.618x_1 \approx -1.618 and x20.618x_2 \approx 0.618, we have f(x)>xf(x) > x in the interval (x1,x2)(x_1, x_2).

The area AA is given by: A=2x1x2(f(x)x)dx=2x1x2(x+1x+2x)dxA = 2 \int_{x_1}^{x_2} (f(x)-x) dx = 2 \int_{x_1}^{x_2} \left(\frac{x+1}{x+2} - x\right) dx A=2x1x2(11x+2x)dxA = 2 \int_{x_1}^{x_2} \left(1 - \frac{1}{x+2} - x\right) dx A=2[xlnx+2x22]x1x2A = 2 \left[ x - \ln|x+2| - \frac{x^2}{2} \right]_{x_1}^{x_2} A=2[(x2lnx2+2x222)(x1lnx1+2x122)]A = 2 \left[ \left( x_2 - \ln|x_2+2| - \frac{x_2^2}{2} \right) - \left( x_1 - \ln|x_1+2| - \frac{x_1^2}{2} \right) \right] A=2[(x2x1)(lnx2+2lnx1+2)12(x22x12)]A = 2 \left[ (x_2-x_1) - (\ln|x_2+2| - \ln|x_1+2|) - \frac{1}{2}(x_2^2-x_1^2) \right]

From x2+x1=0x^2+x-1=0, we know: Sum of roots: x1+x2=1x_1+x_2 = -1 Product of roots: x1x2=1x_1x_2 = -1 Difference of roots: x2x1=(1+5)(15)2=252=5x_2-x_1 = \frac{(-1+\sqrt{5}) - (-1-\sqrt{5})}{2} = \frac{2\sqrt{5}}{2} = \sqrt{5}. Also, x2=1xx^2 = 1-x. So x22=1x2x_2^2 = 1-x_2 and x12=1x1x_1^2 = 1-x_1. Thus, x22x12=(1x2)(1x1)=x1x2=(x2x1)=5x_2^2-x_1^2 = (1-x_2)-(1-x_1) = x_1-x_2 = -(x_2-x_1) = -\sqrt{5}.

Substitute these values into the area formula: A=2[5lnx2+2x1+212(5)]A = 2 \left[ \sqrt{5} - \ln\left|\frac{x_2+2}{x_1+2}\right| - \frac{1}{2}(-\sqrt{5}) \right] A=2[5lnx2+2x1+2+52]A = 2 \left[ \sqrt{5} - \ln\left|\frac{x_2+2}{x_1+2}\right| + \frac{\sqrt{5}}{2} \right] A=2[352lnx2+2x1+2]A = 2 \left[ \frac{3\sqrt{5}}{2} - \ln\left|\frac{x_2+2}{x_1+2}\right| \right] A=352lnx2+2x1+2A = 3\sqrt{5} - 2 \ln\left|\frac{x_2+2}{x_1+2}\right|

Now, let's calculate the ratio x2+2x1+2\frac{x_2+2}{x_1+2}: x2+2=1+52+2=1+5+42=3+52x_2+2 = \frac{-1+\sqrt{5}}{2} + 2 = \frac{-1+\sqrt{5}+4}{2} = \frac{3+\sqrt{5}}{2}. x1+2=152+2=15+42=352x_1+2 = \frac{-1-\sqrt{5}}{2} + 2 = \frac{-1-\sqrt{5}+4}{2} = \frac{3-\sqrt{5}}{2}. x2+2x1+2=(3+5)/2(35)/2=3+535\frac{x_2+2}{x_1+2} = \frac{(3+\sqrt{5})/2}{(3-\sqrt{5})/2} = \frac{3+\sqrt{5}}{3-\sqrt{5}} Rationalize the denominator: 3+535×3+53+5=(3+5)232(5)2=9+5+6595=14+654=7+352\frac{3+\sqrt{5}}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} = \frac{(3+\sqrt{5})^2}{3^2-(\sqrt{5})^2} = \frac{9+5+6\sqrt{5}}{9-5} = \frac{14+6\sqrt{5}}{4} = \frac{7+3\sqrt{5}}{2}.

Now, we need to simplify ln(7+352)\ln\left(\frac{7+3\sqrt{5}}{2}\right). Recall the golden ratio ϕ=1+52\phi = \frac{1+\sqrt{5}}{2}. Let's compute powers of ϕ\phi: ϕ2=(1+52)2=1+5+254=6+254=3+52\phi^2 = \left(\frac{1+\sqrt{5}}{2}\right)^2 = \frac{1+5+2\sqrt{5}}{4} = \frac{6+2\sqrt{5}}{4} = \frac{3+\sqrt{5}}{2}. ϕ3=ϕϕ2=(1+52)(3+52)=3+5+35+54=8+454=2+5\phi^3 = \phi \cdot \phi^2 = \left(\frac{1+\sqrt{5}}{2}\right) \left(\frac{3+\sqrt{5}}{2}\right) = \frac{3+\sqrt{5}+3\sqrt{5}+5}{4} = \frac{8+4\sqrt{5}}{4} = 2+\sqrt{5}. ϕ4=ϕϕ3=(1+52)(2+5)=2+5+25+52=7+352\phi^4 = \phi \cdot \phi^3 = \left(\frac{1+\sqrt{5}}{2}\right) (2+\sqrt{5}) = \frac{2+\sqrt{5}+2\sqrt{5}+5}{2} = \frac{7+3\sqrt{5}}{2}. So, 7+352=ϕ4\frac{7+3\sqrt{5}}{2} = \phi^4. Therefore, ln(7+352)=ln(ϕ4)=4ln(ϕ)\ln\left(\frac{7+3\sqrt{5}}{2}\right) = \ln(\phi^4) = 4\ln(\phi).

Substitute this back into the area formula: A=352(4ln(ϕ))A = 3\sqrt{5} - 2 \left(4\ln(\phi)\right) A=358ln(ϕ)A = 3\sqrt{5} - 8\ln(\phi) A=358ln(1+52)A = 3\sqrt{5} - 8\ln\left(\frac{1+\sqrt{5}}{2}\right).

The final answer is 358ln(1+52)\boxed{3\sqrt{5}-8\ln\left(\frac{1+\sqrt{5}}{2}\right)}.

Explanation of the solution:

  1. Determine the function f(x):
    • Use f(1)=0f(-1)=0 to find a=1a=1.
    • Use y=1y=1 as an asymptote to deduce b=0b=0 and c=1c=1.
    • This gives f(x)=x+1x+2f(x) = \frac{x+1}{x+2}.
  2. Verify Monotonicity:
    • Calculate f(x)=1(x+2)2f'(x) = \frac{1}{(x+2)^2}, which is positive. So f(x)f(x) is strictly increasing.
  3. Find Intersection Points:
    • Solve f(x)=x    x+1x+2=x    x2+x1=0f(x)=x \implies \frac{x+1}{x+2}=x \implies x^2+x-1=0.
    • Roots are x1=152x_1 = \frac{-1-\sqrt{5}}{2} and x2=1+52x_2 = \frac{-1+\sqrt{5}}{2}.
  4. Set up Area Integral:
    • Area =2x1x2(f(x)x)dx= 2 \int_{x_1}^{x_2} (f(x)-x) dx. (Since f(0)=1/2>0f(0)=1/2 > 0, f(x)>xf(x)>x in the interval).
    • A=2x1x2(11x+2x)dxA = 2 \int_{x_1}^{x_2} \left(1 - \frac{1}{x+2} - x\right) dx.
  5. Evaluate the Integral:
    • A=2[xlnx+2x22]x1x2A = 2 \left[ x - \ln|x+2| - \frac{x^2}{2} \right]_{x_1}^{x_2}.
    • Substitute limits and use properties of roots: x2x1=5x_2-x_1=\sqrt{5}, x1+x2=1x_1+x_2=-1, x22x12=(x2x1)=5x_2^2-x_1^2 = -(x_2-x_1) = -\sqrt{5}.
    • Simplify to A=352lnx2+2x1+2A = 3\sqrt{5} - 2 \ln\left|\frac{x_2+2}{x_1+2}\right|.
  6. Simplify Logarithmic Term:
    • Calculate x2+2x1+2=7+352\frac{x_2+2}{x_1+2} = \frac{7+3\sqrt{5}}{2}.
    • Recognize this as ϕ4\phi^4, where ϕ=1+52\phi = \frac{1+\sqrt{5}}{2} (golden ratio).
    • So, ln(7+352)=4ln(ϕ)\ln\left(\frac{7+3\sqrt{5}}{2}\right) = 4\ln(\phi).
  7. Final Area:
    • Substitute back: A=352(4ln(ϕ))=358ln(1+52)A = 3\sqrt{5} - 2(4\ln(\phi)) = 3\sqrt{5} - 8\ln\left(\frac{1+\sqrt{5}}{2}\right).

Answer:

The area bounded between the curves y=f(x)y=f(x) and y=g(x)y=g(x) is 358ln(1+52)3\sqrt{5}-8\ln\left(\frac{1+\sqrt{5}}{2}\right).