Solveeit Logo

Question

Question: Let $F:[3,5]\rightarrow R$ be a twice differential function in (3,5) such that $F(x)=e^{-x}\int_{3}...

Let F:[3,5]RF:[3,5]\rightarrow R be a twice differential function in (3,5) such that

F(x)=ex3x(3t2+2t+4F(t))dtF(x)=e^{-x}\int_{3}^{x}(3t^{2}+2t+4F'(t))dt. Then F(x)=F'(x)=

A

(3x2+2x)(ex4)ex(x3+x236)(ex4)2\frac{(3x^2+2x)(e^x-4) - e^x(x^3+x^2-36)}{(e^x-4)^2}

B

exF(x)3x22x4ex\frac{e^x F(x) - 3x^{2} - 2x}{4 - e^x}

C

3x2+2xex4ex(x3+x236)(ex4)2\frac{3x^2+2x}{e^x-4} - \frac{e^x(x^3+x^2-36)}{(e^x-4)^2}

D

x3+x236ex4\frac{x^3+x^2-36}{e^x-4}

Answer

(3x2+2x)(ex4)ex(x3+x236)(ex4)2\frac{(3x^2+2x)(e^x-4) - e^x(x^3+x^2-36)}{(e^x-4)^2}

Explanation

Solution

We are given the equation: F(x)=ex3x(3t2+2t+4F(t))dtF(x)=e^{-x}\int_{3}^{x}(3t^{2}+2t+4F'(t))dt

Multiply both sides by exe^x: exF(x)=3x(3t2+2t+4F(t))dte^x F(x) = \int_{3}^{x}(3t^{2}+2t+4F'(t))dt

Differentiate both sides with respect to xx. Using the product rule on the left side and the Fundamental Theorem of Calculus on the right side: ddx(exF(x))=exF(x)+exF(x)\frac{d}{dx}(e^x F(x)) = e^x F(x) + e^x F'(x) ddx(3x(3t2+2t+4F(t))dt)=3x2+2x+4F(x)\frac{d}{dx}\left(\int_{3}^{x}(3t^{2}+2t+4F'(t))dt\right) = 3x^{2}+2x+4F'(x)

Equating the derivatives: exF(x)+exF(x)=3x2+2x+4F(x)e^x F(x) + e^x F'(x) = 3x^{2}+2x+4F'(x)

To find F(x)F(x), we can split the integral: exF(x)=3x(3t2+2t)dt+3x4F(t)dte^x F(x) = \int_{3}^{x}(3t^{2}+2t)dt + \int_{3}^{x}4F'(t)dt exF(x)=[t3+t2]3x+4[F(t)]3xe^x F(x) = [t^3+t^2]_{3}^{x} + 4[F(t)]_{3}^{x} exF(x)=(x3+x2)(33+32)+4(F(x)F(3))e^x F(x) = (x^3+x^2) - (3^3+3^2) + 4(F(x) - F(3))

From the original equation, F(3)=e333()dt=0F(3) = e^{-3} \int_{3}^{3} (\dots) dt = 0. So, exF(x)=x3+x2(27+9)+4F(x)e^x F(x) = x^3+x^2 - (27+9) + 4F(x) exF(x)=x3+x236+4F(x)e^x F(x) = x^3+x^2 - 36 + 4F(x) F(x)(ex4)=x3+x236F(x)(e^x - 4) = x^3+x^2 - 36 F(x)=x3+x236ex4F(x) = \frac{x^3+x^2-36}{e^x-4}

Now, substitute this F(x)F(x) back into the differentiated equation: ex(x3+x236ex4)+exF(x)=3x2+2x+4F(x)e^x \left(\frac{x^3+x^2-36}{e^x-4}\right) + e^x F'(x) = 3x^{2}+2x+4F'(x)

Rearrange to solve for F(x)F'(x): exF(x)4F(x)=3x2+2xex(x3+x236ex4)e^x F'(x) - 4F'(x) = 3x^{2}+2x - e^x \left(\frac{x^3+x^2-36}{e^x-4}\right) F(x)(ex4)=3x2+2xex(x3+x236)ex4F'(x)(e^x - 4) = 3x^{2}+2x - \frac{e^x(x^3+x^2-36)}{e^x-4} F(x)=3x2+2xex4ex(x3+x236)(ex4)2F'(x) = \frac{3x^{2}+2x}{e^x-4} - \frac{e^x(x^3+x^2-36)}{(e^x-4)^2}

To combine these terms, find a common denominator: F(x)=(3x2+2x)(ex4)(ex4)2ex(x3+x236)(ex4)2F'(x) = \frac{(3x^{2}+2x)(e^x-4)}{(e^x-4)^2} - \frac{e^x(x^3+x^2-36)}{(e^x-4)^2} F(x)=(3x2+2x)(ex4)ex(x3+x236)(ex4)2F'(x) = \frac{(3x^{2}+2x)(e^x-4) - e^x(x^3+x^2-36)}{(e^x-4)^2}