Question
Question: Let $F:[3,5]\rightarrow R$ be a twice differential function in (3,5) such that $F(x)=e^{-x}\int_{3}...
Let F:[3,5]→R be a twice differential function in (3,5) such that
F(x)=e−x∫3x(3t2+2t+4F′(t))dt. Then F′(x)=

(ex−4)2(3x2+2x)(ex−4)−ex(x3+x2−36)
4−exexF(x)−3x2−2x
ex−43x2+2x−(ex−4)2ex(x3+x2−36)
ex−4x3+x2−36
(ex−4)2(3x2+2x)(ex−4)−ex(x3+x2−36)
Solution
We are given the equation: F(x)=e−x∫3x(3t2+2t+4F′(t))dt
Multiply both sides by ex: exF(x)=∫3x(3t2+2t+4F′(t))dt
Differentiate both sides with respect to x. Using the product rule on the left side and the Fundamental Theorem of Calculus on the right side: dxd(exF(x))=exF(x)+exF′(x) dxd(∫3x(3t2+2t+4F′(t))dt)=3x2+2x+4F′(x)
Equating the derivatives: exF(x)+exF′(x)=3x2+2x+4F′(x)
To find F(x), we can split the integral: exF(x)=∫3x(3t2+2t)dt+∫3x4F′(t)dt exF(x)=[t3+t2]3x+4[F(t)]3x exF(x)=(x3+x2)−(33+32)+4(F(x)−F(3))
From the original equation, F(3)=e−3∫33(…)dt=0. So, exF(x)=x3+x2−(27+9)+4F(x) exF(x)=x3+x2−36+4F(x) F(x)(ex−4)=x3+x2−36 F(x)=ex−4x3+x2−36
Now, substitute this F(x) back into the differentiated equation: ex(ex−4x3+x2−36)+exF′(x)=3x2+2x+4F′(x)
Rearrange to solve for F′(x): exF′(x)−4F′(x)=3x2+2x−ex(ex−4x3+x2−36) F′(x)(ex−4)=3x2+2x−ex−4ex(x3+x2−36) F′(x)=ex−43x2+2x−(ex−4)2ex(x3+x2−36)
To combine these terms, find a common denominator: F′(x)=(ex−4)2(3x2+2x)(ex−4)−(ex−4)2ex(x3+x2−36) F′(x)=(ex−4)2(3x2+2x)(ex−4)−ex(x3+x2−36)