Solveeit Logo

Question

Question: Let $f:(0,\infty)\to R$ be a differentiable function satisfying $f(x)+e^{f(x)}=\frac{2}{x}-\ln x -1$...

Let f:(0,)Rf:(0,\infty)\to R be a differentiable function satisfying f(x)+ef(x)=2xlnx1f(x)+e^{f(x)}=\frac{2}{x}-\ln x -1. Find the number of integers in the range of xx satisfying the inequality f(2x2+1)f(x2+5)f(1),x>0f(2x^2+1)-f(x^2+5)\geq f(1), x>0.

A

5

B

3

C

2

D

1

Answer

2

Explanation

Solution

  1. The function satisfies

    f(x)+ef(x)=2xlnx1f(x)+e^{f(x)}=\frac{2}{x}-\ln x-1.

    Since the function F(t)=t+etF(t)=t+e^t is strictly increasing, for any y>0y>0 we have

    f(y)=F1[2ylny1]f(y)=F^{-1}\Bigl[\frac{2}{y}-\ln y-1\Bigr].

  2. To compare values f(2x2+1)f(2x^2+1) and f(x2+5)f(x^2+5), note that if we can show that ff is strictly decreasing, then

    f(2x2+1)f(x2+5)if and only if2x2+1x2+5f(2x^2+1) \ge f(x^2+5) \quad\text{if and only if}\quad 2x^2+1 \le x^2+5.

  3. Verify that ff is decreasing:

    Write g(y)=2ylnyg(y)=\frac{2}{y}-\ln y. Its derivative is

    g(y)=2y21y=2+yy2<0,y>0g'(y)=-\frac{2}{y^2}-\frac{1}{y}=-\frac{2+y}{y^2}<0,\quad y>0.

    Therefore, g(y)g(y) is decreasing, which implies that higher arguments yield lower values of ff. Hence, ff is strictly decreasing.

  4. Solve the inequality:

    2x2+1x2+5x242x^2+1 \le x^2+5 \quad \Longrightarrow \quad x^2 \le 4.

    Since x>0x>0, we have:

    0<x20< x \le 2.

  5. The integer values of xx in this interval are x=1x=1 and x=2x=2. Therefore, there are 2 integers.

Core Explanation:

Since the function ff defined implicitly is shown to be decreasing, the inequality f(2x2+1)f(x2+5)f(1)f(2x^2+1)-f(x^2+5)\ge f(1) is equivalent to 2x2+1x2+52x^2+1\le x^2+5, giving x24x^2\le 4 (i.e. 0<x20<x\le 2). The integers in (0,2](0,2] are 1 and 2.