Solveeit Logo

Question

Question: Let $f:(0,\infty) \rightarrow R$ and $F(x) = \int_{0}^{x}f(t)dt$. If $F(x^2) = x^2(1+x)$ then $f(4)$...

Let f:(0,)Rf:(0,\infty) \rightarrow R and F(x)=0xf(t)dtF(x) = \int_{0}^{x}f(t)dt. If F(x2)=x2(1+x)F(x^2) = x^2(1+x) then f(4)f(4) equals:

Answer

4

Explanation

Solution

To find the value of f(4)f(4), we will use the given information and the Fundamental Theorem of Calculus.

Given:

  1. F(x)=0xf(t)dtF(x) = \int_{0}^{x}f(t)dt
  2. F(x2)=x2(1+x)F(x^2) = x^2(1+x)

Step 1: Relate F(x)F(x) and f(x)f(x) using the Fundamental Theorem of Calculus. According to the Fundamental Theorem of Calculus, if F(x)=axf(t)dtF(x) = \int_{a}^{x}f(t)dt, then F(x)=f(x)F'(x) = f(x). Therefore, from the first given condition, we have: F(x)=f(x)F'(x) = f(x)

Step 2: Differentiate the second given equation with respect to xx. The second equation is F(x2)=x2(1+x)F(x^2) = x^2(1+x). Differentiate both sides with respect to xx: ddx(F(x2))=ddx(x2(1+x))\frac{d}{dx}(F(x^2)) = \frac{d}{dx}(x^2(1+x))

For the left side, use the chain rule: ddxF(g(x))=F(g(x))g(x)\frac{d}{dx}F(g(x)) = F'(g(x)) \cdot g'(x). Here g(x)=x2g(x) = x^2, so g(x)=2xg'(x) = 2x. ddx(F(x2))=F(x2)2x\frac{d}{dx}(F(x^2)) = F'(x^2) \cdot 2x

For the right side, first expand x2(1+x)x^2(1+x) to x2+x3x^2+x^3, then differentiate: ddx(x2+x3)=2x+3x2\frac{d}{dx}(x^2+x^3) = 2x + 3x^2

Equating the derivatives of both sides: F(x2)2x=2x+3x2F'(x^2) \cdot 2x = 2x + 3x^2

Step 3: Substitute F(x2)F'(x^2) with f(x2)f(x^2). From Step 1, we know F(x)=f(x)F'(x) = f(x). Replacing xx with x2x^2, we get F(x2)=f(x2)F'(x^2) = f(x^2). Substitute this into the equation from Step 2: f(x2)2x=2x+3x2f(x^2) \cdot 2x = 2x + 3x^2

Step 4: Solve for f(x2)f(x^2). Divide both sides by 2x2x. Since the domain of ff is (0,)(0,\infty), xx must be positive, so 2x02x \neq 0. f(x2)=2x+3x22xf(x^2) = \frac{2x + 3x^2}{2x} f(x2)=2x2x+3x22xf(x^2) = \frac{2x}{2x} + \frac{3x^2}{2x} f(x2)=1+3x2f(x^2) = 1 + \frac{3x}{2}

Step 5: Find f(4)f(4). We need to find f(4)f(4). From the expression f(x2)=1+3x2f(x^2) = 1 + \frac{3x}{2}, we need x2=4x^2 = 4. Since x(0,)x \in (0,\infty), we take the positive square root, so x=2x = 2. Substitute x=2x=2 into the expression for f(x2)f(x^2): f(4)=1+3(2)2f(4) = 1 + \frac{3(2)}{2} f(4)=1+3f(4) = 1 + 3 f(4)=4f(4) = 4

The final answer is 44.