Solveeit Logo

Question

Question: Let $f:[0,1]\rightarrow R$ be defined by $f(x)=\frac{4^x}{4^x+2}$ then value of $2\left[f(\frac{1}{4...

Let f:[0,1]Rf:[0,1]\rightarrow R be defined by f(x)=4x4x+2f(x)=\frac{4^x}{4^x+2} then value of 2[f(140)+f(240)+f(340)+...+f(3940)]2\left[f(\frac{1}{40})+f(\frac{2}{40})+f(\frac{3}{40})+...+f(\frac{39}{40})\right]

Answer

39

Explanation

Solution

The function is given by f(x)=4x4x+2f(x) = \frac{4^x}{4^x+2} for x[0,1]x \in [0,1].
We first examine the property of the function f(x)f(x) with respect to 1x1-x.
f(1x)=41x41x+2=44x44x+2=44x4+24x4x=44+24x=22+4xf(1-x) = \frac{4^{1-x}}{4^{1-x}+2} = \frac{\frac{4}{4^x}}{\frac{4}{4^x}+2} = \frac{\frac{4}{4^x}}{\frac{4+2 \cdot 4^x}{4^x}} = \frac{4}{4+2 \cdot 4^x} = \frac{2}{2+4^x}.
Now, let's add f(x)f(x) and f(1x)f(1-x):
f(x)+f(1x)=4x4x+2+24x+2=4x+24x+2=1f(x) + f(1-x) = \frac{4^x}{4^x+2} + \frac{2}{4^x+2} = \frac{4^x+2}{4^x+2} = 1.
So, f(x)+f(1x)=1f(x) + f(1-x) = 1 for all x[0,1]x \in [0,1].

We need to evaluate the sum S=f(140)+f(240)+f(340)+...+f(3940)S = f(\frac{1}{40})+f(\frac{2}{40})+f(\frac{3}{40})+...+f(\frac{39}{40}).
The sum consists of 39 terms of the form f(k40)f(\frac{k}{40}) for k=1,2,...,39k=1, 2, ..., 39.
We can group the terms in pairs (f(k40),f(40k40))(f(\frac{k}{40}), f(\frac{40-k}{40})).
For k=1,2,...,19k=1, 2, ..., 19, the term f(k40)f(\frac{k}{40}) is paired with f(40k40)=f(1k40)f(\frac{40-k}{40}) = f(1-\frac{k}{40}).
Using the property f(x)+f(1x)=1f(x) + f(1-x) = 1, we have f(k40)+f(40k40)=1f(\frac{k}{40}) + f(\frac{40-k}{40}) = 1.
There are 19 such pairs corresponding to k=1,2,...,19k=1, 2, ..., 19.
The sum of these 19 pairs is 19×1=1919 \times 1 = 19.

The sum SS can be written as:
S=[f(140)+f(3940)]+[f(240)+f(3840)]+...+[f(1940)+f(2140)]+f(2040)S = [f(\frac{1}{40})+f(\frac{39}{40})] + [f(\frac{2}{40})+f(\frac{38}{40})] + ... + [f(\frac{19}{40})+f(\frac{21}{40})] + f(\frac{20}{40}).
The terms from k=1k=1 to k=19k=19 are paired with terms from k=39k=39 down to k=21k=21.
The middle term is when k=40kk = 40-k, which gives 2k=402k=40, so k=20k=20. The middle term is f(2040)=f(12)f(\frac{20}{40}) = f(\frac{1}{2}). This term is not part of any pair summing to 1 within the sum.

So, the sum is S=k=119[f(k40)+f(40k40)]+f(2040)S = \sum_{k=1}^{19} \left[f(\frac{k}{40}) + f(\frac{40-k}{40})\right] + f(\frac{20}{40}).
S=k=1191+f(12)S = \sum_{k=1}^{19} 1 + f(\frac{1}{2}).
S=19×1+f(12)S = 19 \times 1 + f(\frac{1}{2}).
S=19+f(12)S = 19 + f(\frac{1}{2}).

Now we calculate the value of f(12)f(\frac{1}{2}):
f(12)=41/241/2+2=44+2=22+2=24=12f(\frac{1}{2}) = \frac{4^{1/2}}{4^{1/2}+2} = \frac{\sqrt{4}}{\sqrt{4}+2} = \frac{2}{2+2} = \frac{2}{4} = \frac{1}{2}.

Substitute the value of f(12)f(\frac{1}{2}) back into the expression for SS:
S=19+12=38+12=392S = 19 + \frac{1}{2} = \frac{38+1}{2} = \frac{39}{2}.

The question asks for the value of 2[f(140)+f(240)+f(340)+...+f(3940)]2 \left[f(\frac{1}{40})+f(\frac{2}{40})+f(\frac{3}{40})+...+f(\frac{39}{40})\right], which is 2S2S.
2S=2×392=392S = 2 \times \frac{39}{2} = 39.

The final answer is 39\boxed{39}.