Question
Question: Let $f:[0,1]\rightarrow R$ be defined by $f(x)=\frac{4^x}{4^x+2}$ then value of $2\left[f(\frac{1}{4...
Let f:[0,1]→R be defined by f(x)=4x+24x then value of 2[f(401)+f(402)+f(403)+...+f(4039)]

39
Solution
The function is given by f(x)=4x+24x for x∈[0,1].
We first examine the property of the function f(x) with respect to 1−x.
f(1−x)=41−x+241−x=4x4+24x4=4x4+2⋅4x4x4=4+2⋅4x4=2+4x2.
Now, let's add f(x) and f(1−x):
f(x)+f(1−x)=4x+24x+4x+22=4x+24x+2=1.
So, f(x)+f(1−x)=1 for all x∈[0,1].
We need to evaluate the sum S=f(401)+f(402)+f(403)+...+f(4039).
The sum consists of 39 terms of the form f(40k) for k=1,2,...,39.
We can group the terms in pairs (f(40k),f(4040−k)).
For k=1,2,...,19, the term f(40k) is paired with f(4040−k)=f(1−40k).
Using the property f(x)+f(1−x)=1, we have f(40k)+f(4040−k)=1.
There are 19 such pairs corresponding to k=1,2,...,19.
The sum of these 19 pairs is 19×1=19.
The sum S can be written as:
S=[f(401)+f(4039)]+[f(402)+f(4038)]+...+[f(4019)+f(4021)]+f(4020).
The terms from k=1 to k=19 are paired with terms from k=39 down to k=21.
The middle term is when k=40−k, which gives 2k=40, so k=20. The middle term is f(4020)=f(21). This term is not part of any pair summing to 1 within the sum.
So, the sum is S=∑k=119[f(40k)+f(4040−k)]+f(4020).
S=∑k=1191+f(21).
S=19×1+f(21).
S=19+f(21).
Now we calculate the value of f(21):
f(21)=41/2+241/2=4+24=2+22=42=21.
Substitute the value of f(21) back into the expression for S:
S=19+21=238+1=239.
The question asks for the value of 2[f(401)+f(402)+f(403)+...+f(4039)], which is 2S.
2S=2×239=39.
The final answer is 39.