Solveeit Logo

Question

Question: Let, \[f(xy)=f(x)f(y)\forall x,y\ in R\] and \[f\] is differentiable at \[x=1\] such that \[f'(1)=1\...

Let, f(xy)=f(x)f(y)x,y inRf(xy)=f(x)f(y)\forall x,y\ in R and ff is differentiable at x=1x=1 such that f(1)=1f'(1)=1.Also, f(1)1,f(2)=3f(1)\ne 1,f(2)=3. Then findf(2)f'(2).

Explanation

Solution

Hint: Use the concept derivative using first principle to solve the above problem i.e. use the formula f(x)=limh0f(x+h)f(x)hf'(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h}.

We will write the given values first,
f(1)0,f(1)=1,f(2)=3f(1)\ne 0,f'(1)=1,f(2)=3………………………………………… (1)
Now we will write the given equation,
f(xy)=f(x)f(y)f(xy)=f(x)f(y) …………………………………………………… (2)
Put, x=y=1x=y=1so that we can calculate the value of f (1),
f(1×1)=f(1)×f(1)\therefore f(1\times 1)=f(1)\times f(1)
f(1)f(1)×f(1)=0\therefore f(1)-f(1)\times f(1)=0
f(1)×[1f(1)]=0\therefore f(1)\times [1-f(1)]=0
f(1)=0\therefore f(1)=0 OR [1f(1)]=0[1-f(1)]=0
We have given f(1)0f(1)\ne 0,
[1f(1)]=0\therefore [1-f(1)]=0
f(1)=1\therefore f(1)=1…………………………………………………………………… (3)
As we have to find f(2)f'(2) we should know the formula for differentiation by First Principle.

Formula:
f(x)=limh0f(x+h)f(x)hf'(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h}
By using above formula we can write equation for f(2)f'(2),
f(2)=limh0f(2+h)f(2)h\therefore f'(2)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(2+h)-f(2)}{h}
Now take 2 common from f(2+h)f(2+h),
f(2)=limh0f[2(1+h2)]f(2)h\therefore f'(2)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left[ 2(1+\dfrac{h}{2}) \right]-f(2)}{h}…………………………………….. (4)
Now using the equation given in problem,
f(xy)=f(x)×f(y)f(xy)=f(x)\times f(y)
We can write f[2(1+h2)]f\left[ 2\left( 1+\dfrac{h}{2} \right) \right] by comparing it with above equation,
f[2(1+h2)]=f(2)×f(1+h2)\therefore f\left[ 2\left( 1+\dfrac{h}{2} \right) \right]=f(2)\times f\left( 1+\dfrac{h}{2} \right)
Now put this value in equation (4)
f(2)=limh0f(2)×f(1+h2)f(2)h\therefore f'(2)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(2)\times f\left( 1+\dfrac{h}{2} \right)-f(2)}{h}
By taking f(2)f(2) common from the equation we can write,
f(2)=limh0f(2)×[f(1+h2)1]h\therefore f'(2)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(2)\times \left[ f\left( 1+\dfrac{h}{2} \right)-1 \right]}{h}
As f(2)f(2) is constant we can take it outside the limit,
f(2)=f(2)limh0[f(1+h2)1]h\therefore f'(2)=\underset{h\to 0}{\mathop{f(2)\lim }}\,\dfrac{\left[ f\left( 1+\dfrac{h}{2} \right)-1 \right]}{h}

Now 1 can be replaced by f(1)f(1) as we have evaluated it in equation (3),
f(2)=f(2)limh0[f(1+h2)f(1)]h\therefore f'(2)=\underset{h\to 0}{\mathop{f(2)\lim }}\,\dfrac{\left[ f\left( 1+\dfrac{h}{2} \right)-f(1) \right]}{h}
If we observe above equation carefully then we can compare the equation with the formula of first principle,
f(x)=limh0f(x+h)f(x)hf'(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h}
After comparing we can conclude that the equation requires adjustment in the denominator, i.e. we have to replace ‘h’ by h2\dfrac{h}{2}.
For that we will do the adjustment of multiplying and dividing the equation by 12\dfrac{1}{2},
f(2)=f(2)limh0[f(1+h2)f(1)]×12h×12\therefore f'(2)=f(2)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left[ f\left( 1+\dfrac{h}{2} \right)-f(1) \right]\times \dfrac{1}{2}}{h\times \dfrac{1}{2}}………………………………………. (5)
By using formula of first principle we can write the equation for f(1)f'(1) by replacing ‘h’ by h2\dfrac{h}{2} as follows,

f(1)=limh0f(1+h2)f(1)h2f'(1)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(1+\dfrac{h}{2})-f(1)}{\dfrac{h}{2}}
Therefore equation (5) becomes,
f(2)=f(2)×f(1)×12\therefore f'(2)=f(2)\times f'(1)\times \dfrac{1}{2}
Put the values of equation (1) in above equation,
f(2)=3×1×12\therefore f'(2)=3\times 1\times \dfrac{1}{2}
f(2)=32\therefore f'(2)=\dfrac{3}{2}
Therefore the value of f(2)f'(2) is 32\dfrac{3}{2}.
Note: You can try to solve this type of problems by using first principles if you don’t have any idea.
First principle of derivative can be given as,
f(x)=limh0f(x+h)f(x)hf'(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h}