Solveeit Logo

Question

Question: Let f(x, y) be a periodic function satisfying the condition \(f\left( x,y \right)=f\left( 2x+2y \rig...

Let f(x, y) be a periodic function satisfying the condition f(x,y)=f(2x+2y),(2y2x)x,yRf\left( x,y \right)=f\left( 2x+2y \right),\left( 2y-2x \right)\forall x,y\in R. Now, define a function g by g(x)=f(2x,0)g\left( x \right)=f\left( {{2}^{x}},0 \right). Then, show g(x) is a periodic function, find its period?

Explanation

Solution

The above given function is a periodic function. A periodic function is a function that repeats its values at regular intervals. Or we can say a function with a graph that repeats identically from left to right. It can be represented by f(x)=f(x+p)f\left( x \right)=f\left( x+p \right). We have to find the period of the given function. The period is the horizontal distance required for a complete cycle of graph.

Complete step by step solution:
The given periodic function is:
f(x,y)=f(2x+2y,2y2x).......(1)\Rightarrow f\left( x,y \right)=f\left( 2x+2y,2y-2x \right).......(1)
Since it is a periodic function then it will repeat itself, then we can write is as:
f(2x+2y,2y2x)=f(2(2x+2y)+2(2y2x),2(2y2x)2(2x+2y))\Rightarrow f\left( 2x+2y,2y-2x \right)=f\left( 2\left( 2x+2y \right)+2\left( 2y-2x \right),2\left( 2y-2x \right)-2\left( 2x+2y \right) \right)
Now simplify it
f(2x+2y,2y2x)=f[4x+4y+4y4x,4y4x4x4y]\Rightarrow f\left( 2x+2y,2y-2x \right)=f\left[ 4x+4y+4y-4x,4y-4x-4x-4y \right]
f(2x+2y,2y2x)=f(8y,8x)\Rightarrow f\left( 2x+2y,2y-2x \right)=f\left( 8y,-8x \right)
Now by equation (1), if we compare equation (1), and the above expression then we get
f(x,y)=f(8y,8x).....(2)\Rightarrow f\left( x,y \right)=f\left( 8y,-8x \right).....(2)
Since it is a periodic function so we again repeat the process, then we get
f(8y,8x)=f[8(8x),8(8y)] f(8y,8x)=f(64x,64y) \begin{aligned} & \Rightarrow f\left( 8y,-8x \right)=f\left[ 8\left( -8x \right),-8\left( 8y \right) \right] \\\ & \Rightarrow f\left( 8y,-8x \right)=f\left( -64x,-64y \right) \\\ \end{aligned}
Now if we compare eq. (1), eq. (2), and the above expression, then we get
f(x,y)=f(2x+2y,2y2x)=f(8y,8x)=f(64x,64y)\Rightarrow f\left( x,y \right)=f\left( 2x+2y,2y-2x \right)=f\left( 8y,-8x \right)=f\left( -64x,-64y \right)
Now from the above equation, we get
f(x,y)=f(64x,64y)........(3)\Rightarrow f\left( x,y \right)=f\left( -64x,-64y \right)........(3)
Again we will do same procedure, then we get
f(64x,64y)=f(64(64x),64(64y))\Rightarrow f\left( -64x,-64y \right)=f\left( -64\left( -64x \right),-64\left( -64y \right) \right)
We know we can write 64=2664={{2}^{6}} , putting the value in above expression, then we get
f(64x,64y)=f(26(26x),26(26y))\Rightarrow f\left( -64x,-64y \right)=f\left( -{{2}^{6}}\left( -{{2}^{6}}x \right),-{{2}^{6}}\left( -{{2}^{6}}y \right) \right)
Now, we know that ax.ay=ax+y{{a}^{x}}.{{a}^{y}}={{a}^{x+y}}, now applying this in above equation, then we get
f(64x,64y)=f(212x,212y)\Rightarrow f\left( -64x,-64y \right)=f\left( {{2}^{12}}x,{{2}^{12}}y \right)
Now from equation (3), we get
f(x,y)=f(212x,212y)\Rightarrow f\left( x,y \right)=f\left( {{2}^{12}}x,{{2}^{12}}y \right)
Now we have prove that the function g(x)=f(2x,0)g\left( x \right)=f\left( {{2}^{x}},0 \right)is periodic, so from the above the expression, we get
g(x)=f(2x,0)=f(2122x,0)=f(212+x,0).......(4)\Rightarrow g\left( x \right)=f\left( {{2}^{x}},0 \right)=f\left( {{2}^{12}}{{2}^{x}},0 \right)=f\left( {{2}^{12+x}},0 \right).......\left( 4 \right)
Given, g(x,0)=f(2x,0)g\left( x,0 \right)=f\left( {{2}^{x}},0 \right)
Now from equation (4), we get
g(x,0)=f(2x,0)=f(212+x,0) g(x,0)=g(x+12,0) \begin{aligned} & \Rightarrow g\left( x,0 \right)=f\left( {{2}^{x}},0 \right)=f\left( {{2}^{12+x}},0 \right) \\\ & \Rightarrow g\left( x,0 \right)=g\left( x+12,0 \right) \\\ \end{aligned}
Hence g(x) is a periodic function and its period is 1212.

Note: It is not hard to check the periodic function of any function. To determine the periodicity and period of a function, we follow some steps:
1 Put f(x+T)=f(x)
2 If there exists a positive number “T” satisfying equation in “1” and it is independent of “X”, then f(x) is periodic.
3 The least value of “T” is the period of the periodic function.