Question
Mathematics Question on Integrals of Some Particular Functions
Let f(x)=x−[x], for every real number x, where [x] is the integral part of x Then, ∫−11f(x)dx is
A
1
B
2
C
0
D
−21
Answer
1
Explanation
Solution
The correct option is(A): 1.
∫−11 f(x) dx =∫−11(x−[x]) dx=∫−11 x dx−∫−11[x] dx
=0−∫−11[x] dx[∵ x is an odd number]
But [ x ] = \bigg \\{ \begin{array}
\ -1 \\\
0, \\\
1, \\\
\end {array} \begin{array}
\ \ \ if \\\
\ \ if \\\
\ \ if \\\
\end {array} \begin{array}
\ \ \ -1 \le x < 0 \\\
\ \ \le x < 1 \\\
\ \ \ x = 1 \\\
\end {array}
∴∫−11[x] dx=∫−10[x] dx+∫01[x] dx
=∫−10(−1)dx+∫01 0 dx
=−[x]−10+0=−1
∴∫−11f(x) dx=1