Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

Let f(x)=x[x]f(x) = x - [x] , for every real number x, where [x] is the integral part of x Then, 11f(x)dx \int^1_{-1} \, f ( x ) \, dx is

A

1

B

2

C

0

D

12- \frac{ 1 }{2 }

Answer

1

Explanation

Solution

The correct option is(A): 1.

11 f(x) dx =11(x[x]) dx=11 x dx11[x] dx\int^1_{-1} \ f ( x ) \ dx \ = \int^1_{-1} ( x - [x] ) \ dx = \int^1_{-1} \ x \ dx - \int^1_{-1} [x ] \ dx
                   =011[x] dx[ x is an odd number]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 0 - \int^1_{-1} [ x ] \ dx [ \because \ x \ is \ an \ odd \ number ]
But [ x ] = \bigg \\{ \begin{array} \ -1 \\\ 0, \\\ 1, \\\ \end {array} \begin{array} \ \ \ if \\\ \ \ if \\\ \ \ if \\\ \end {array} \begin{array} \ \ \ -1 \le x < 0 \\\ \ \ \le x < 1 \\\ \ \ \ x = 1 \\\ \end {array}
11[x] dx=10[x] dx+01[x] dx\therefore \int^1_{-1} [ x ] \ dx = \int^0_{-1} [ x ] \ dx + \int^1_0 [ x ] \ dx
               =10(1)dx+01 0 dx\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \int^0_{-1} ( - 1) dx + \int^1 _0 \ 0 \ dx
               =[x]10+0=1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = - [ x ]^0_{-1} + 0 = {-1}
11f(x) dx=1\therefore \int^1_{-1} f ( x ) \ dx = 1