Solveeit Logo

Question

Mathematics Question on Application of derivatives

Let f(x)=x+logexxlogex, x(0,)f(x)=x+log_{e}​x−xlog_{e}​x,\text{ }x∈(0,∞).

  • Column 1 contains information about zeros of f(x)f(x), f(x)f'(x) and f(x)f''(x).
  • Column 2 contains information about the limiting behavior of f(x)f(x), f(x)f'(x) and f(x)f''(x) at infinity.
  • Column 3 contains information about increasing/decreasing nature of f(x)f(x) and f(x)f'(x).

A

(I) (iii) (P)

B

(II) (iv) (Q)

C

(III) (i) (R)

D

(II) (iii) (P)

Answer

(III) (i) (R)

Explanation

Solution

  1. f(x)=x+loge(x)xloge(x)f ( x )= x +\log _{e}( x )- x \log _{e}( x )
  2. f(x)=1xloge(x)f ^{\prime}( x )=\frac{1}{ x }-\log _{ e }( x )
  3. f(x)=(x+1)x2<0x>0f^{\prime \prime}(x)=-\frac{(x+1)}{x^{2}}<0 \forall x>0
  4. f(1)=f(e)=1,f(e2)<0f (1)= f ( e )=1, f \left( e ^{2}\right)<0
  5. f(1)=1,f(e)=1e1<0f ^{\prime}(1)=1, f ^{\prime}( e )=\frac{1}{ e }-1<0