Solveeit Logo

Question

Mathematics Question on Functions

Let f(x)=x5+2x3+3x+1f(x) = x^5 + 2x^3 + 3x + 1, xRx \in \mathbb{R}, and g(x)g(x) be a function such that g(f(x))=xg(f(x)) = x for all xRx \in \mathbb{R}. Then g(7)g(7)\frac{g(7)}{g'(7)} is equal to:

A

7

B

42

C

1

D

14

Answer

14

Explanation

Solution

Given:

f(x)=x5+2x3+3x+1f(x) = x^5 + 2x^3 + 3x + 1

Then,

f(x)=5x4+6x2+3f'(x) = 5x^4 + 6x^2 + 3

Calculate f(1)f'(1):

f(1)=514+612+3=14f'(1) = 5 \cdot 1^4 + 6 \cdot 1^2 + 3 = 14

Since g(f(x))=xg(f(x)) = x, by differentiation, we get:

g(f(x))f(x)=1g'(f(x))f'(x) = 1

For f(x)=7f(x) = 7:

x5+2x3+3x+1=7x^5 + 2x^3 + 3x + 1 = 7

This implies x=1x = 1, so f(1)=7f(1) = 7.

Then g(7)=1g(7) = 1.

Now,

g(7)f(1)=1g(7)=1f(1)=114g'(7)f'(1) = 1 \Rightarrow g'(7) = \frac{1}{f'(1)} = \frac{1}{14}

Thus, g(7)g(7)=1114=14\frac{g(7)}{g'(7)} = \frac{1}{\frac{1}{14}} = 14