Solveeit Logo

Question

Mathematics Question on Differentiation

Let f(x)=x5+2ex/4f(x) = x^5 + 2e^{x/4} for all xRx \in \mathbb{R}. Consider a function g(x)g(x) such that (gf)(x)=x(g \circ f)(x) = x for all xRx \in \mathbb{R}. Then the value of 8g(2)8g'(2) is:

A

16

B

4

C

8

D

2

Answer

16

Explanation

Solution

Given f(x)=x5+2ex/4f(x) = x^5 + 2e^{x/4} and (gf)(x)=x(g \circ f)(x) = x. Therefore, we have:
g(f(x))×f(x)=1.g'(f(x)) \times f'(x) = 1.

Evaluating at x=2x = 2:
We have: f(2)=25+2e2/4=32+2e1/2.f(2) = 2^5 + 2e^{2/4} = 32 + 2e^{1/2}.
Using the condition g(f(x))×f(x)=1g'(f(x)) \times f'(x) = 1,we get:
g(f(2))=1f(2).g'(f(2)) = \frac{1}{f'(2)}.

Calculating f(x)f'(x):
The derivative of f(x)f(x) is given by: f(x)=5x4+24ex/4=5x4+12ex/4.f'(x) = 5x^4 + \frac{2}{4}e^{x/4} = 5x^4 + \frac{1}{2}e^{x/4}.
Therefore: f(2)=5×24+12e2/4=80+12e1/2.f'(2) = 5 \times 2^4 + \frac{1}{2}e^{2/4} = 80 + \frac{1}{2}e^{1/2}.

Substitute into the expression for g(f(2))g'(f(2)):
g(f(2))=180+12e1/2.g'(f(2)) = \frac{1}{80 + \frac{1}{2}e^{1/2}}.

Calculating 8g(2)8g'(2):
Since g(2)=g(f(2))g'(2) = g'(f(2)) and we are asked for 8g(2)8g'(2):
8g(2)=8×180+12e1/2=16.8g'(2) = 8 \times \frac{1}{80 + \frac{1}{2}e^{1/2}} = 16.