Solveeit Logo

Question

Mathematics Question on Fundamental Theorem of Calculus

Let f(x)=x3+x2f(1)+xf(2)+f(3)f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3), xRx \in \mathbb{R}. Then f(10)f'(10) is equal to ______.

Answer

Step 1. Given f(x)=x3+x2f(1)+xf(2)+f(3)f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3). Substitute f(1)=5f'(1) = -5, f(2)=2f''(2) = 2, f(3)=6f'''(3) = 6.

Step 2. Calculate f(x)f'(x):
f(x)=3x2+2xf(1)+f(2)f'(x) = 3x^2 + 2x f'(1) + f''(2)

Step 3. Evaluate f(10)f'(10):
f(10)=202f'(10) = 202