Solveeit Logo

Question

Mathematics Question on Application of derivatives

Let F(x)=x3+ax2+bx+5sin2xF(x) = x^3 + ax^2 + bx + 5 sin^2\, x be an increasing function in the set of real number RR. Then a and b satisfy the condition.

A

a23b15>0a^2 - 3b - 15 > 0

B

a23b+15>0a^2 - 3b + 15 > 0

C

a2+3b15<0a^2 + 3b - 15 < 0

D

a>0a > 0 and b>0b > 0

Answer

a2+3b15<0a^2 + 3b - 15 < 0

Explanation

Solution

We have f(x)=x3+ax2+bx+5sin2xf(x) = x^3 + ax^2 + bx + 5 sin^2\, x f(x)3x2+2ax+b+5sin2x\Rightarrow f '(x) 3x^2 + 2ax + b + 5\,sin\,2x f(x)\because f(x) is an increasing function f(x)>03x2+2ax+b+5sin2x>0,\therefore f '\left(x\right) >0 \Rightarrow 3x^{2}+2ax+b+5\,sin\,2x > 0, (sin2x<1)\left(\because sin\,2x < 1\right) 0<3x2+2ax+b+5sin2x<3x2+2ax+b+5\therefore 0 < 3x^{2}+2ax+b+5\,sin\,2x < 3x^{2} + 2ax+b+5 3x2+2ax+b+5>0\Rightarrow 3x^{2}+2ax+b+5 > 0 4a2+4.3(b+5)<0a2+3b15<0\Rightarrow 4a^{2}+4.3\left(b+5\right) < 0 \Rightarrow a^{2}+3b-15 < 0 [ax2+bx+c>0\because ax^{2}+bx+c > 0 or all real xx if . a>0a > 0 and discriminant <0< 0]