Question
Mathematics Question on Application of derivatives
Let F(x)=x3+ax2+bx+5sin2x be an increasing function in the set of real number R. Then a and b satisfy the condition.
A
a2−3b−15>0
B
a2−3b+15>0
C
a2+3b−15<0
D
a>0 and b>0
Answer
a2+3b−15<0
Explanation
Solution
We have f(x)=x3+ax2+bx+5sin2x ⇒f′(x)3x2+2ax+b+5sin2x ∵f(x) is an increasing function ∴f′(x)>0⇒3x2+2ax+b+5sin2x>0, (∵sin2x<1) ∴0<3x2+2ax+b+5sin2x<3x2+2ax+b+5 ⇒3x2+2ax+b+5>0 ⇒4a2+4.3(b+5)<0⇒a2+3b−15<0 [∵ax2+bx+c>0 or all real x if . a>0 and discriminant <0]