Solveeit Logo

Question

Mathematics Question on Differentiability

Let f(x)=(x+3)2(x2)3f(x) = (x + 3)^2 (x - 2)^3, x[4,4]x \in [-4, 4]. If MM and mm are the maximum and minimum values of ff, respectively in [4,4][-4, 4], then the value of MmM - m is:

A

600

B

392

C

608

D

108

Answer

608

Explanation

Solution

To find the maximum and minimum values of f(x)f(x):

Take the derivative f(x)f'(x) and find the critical points.

Evaluate f(x)f(x) at critical points and endpoints x=4,3,2,1,1,2,3,4x = -4, -3, -2, -1, 1, 2, 3, 4.

The maximum value M=392M = 392 and the minimum value m=216m = -216.

The value of MmM - m is:

Mm=392(216)=608.M - m = 392 - (-216) = 608.