Solveeit Logo

Question

Mathematics Question on Quadratic Equations

Let f(x)=x2+ax+b,f(x) = x^2 + ax + b, where a,bRa, b \in R. If f(x)=0 f(x) = 0 has all its roots imaginary, then the roots of f(x)+f(x)+f"(x)=0 f(x) + f' (x) + f" (x) = 0 are

A

Real and distinct

B

Imaginary

C

Equal

D

Rational and equal

Answer

Imaginary

Explanation

Solution

Given, f(x)=x2+ax+bf(x) = x^2 + ax + b has imaginary roots.
\therefore Discriminant, D<0a24b<0D < 0 \, \Rightarrow \, a^2 - 4b < 0
Now, f(x)=2x+af'(x) = 2x + a
f(x)=2f'(x) = 2
Also , f(x)+f(x)+f"(x)=0f(x) + f (x) + f" (x) = 0
x2+ax+b+2x+a+2=0\Rightarrow \, \, \, x^2 + ax + b + 2x + a + 2 = 0
x2+(a+2)x+b+a+2=0\Rightarrow \, \, \, x^2 + (a + 2)x + b + a + 2 = 0
x=a+2±a+224a+b+22\therefore \, \, x = \frac{ - a + 2 \pm \overline{ a+2^2 - 4 \, a + b + 2}}{2}
=a+2±a24b42= \frac{- a + 2 \, \pm \, \overline{a^2 - 4 b - 4}}{2}
Since, a24b<0a^2 - 4b < 0
a24b4<0a^2 - 4b - 4 < 0
Hence, E (i) has imaginary roots