Question
Quantitative Aptitude Question on Functions
Let f(x)=x2+ax+b and g(x)=f(x+1)−f(x−1). If f(x)≥0 for all real x, and g(20)=72, then the smallest possible value of b is
A
1
B
16
C
0
D
4
Answer
4
Explanation
Solution
The correct answer is (D): 4
f(x)=x2+ax+b
g(x)=f(x+1)−f(x−1)
=(x+1)2+a(x+1)+b−(x−1)2+a(x−1)+b
g(x)=4x+2a
g(20)=72
80+2a=72⇒a=−4
∴f(x)=x2−4x+b
f(x)=(x−2)2+b−4
When b≥4f(x)≥0 for all x
∴ The minimum value of b is 4