Solveeit Logo

Question

Mathematics Question on binomial expansion formula

Let f(x)=x2+ax+b,f(x)=x^{2}+a x +b, where a,bR.a, b \in R . If f(x)=0f(x)=0 has all its roots imaginary, then the roots of f(x)+f(x)+f(x)=0f(x)+f'(x)+f''(x)=0 are

A

real and distinct

B

imaginary

C

equal

D

rational and equal

Answer

imaginary

Explanation

Solution

Given, f(x)=x2+ax+bf(x)=x^{2}+a x +b has imaginary roots. \therefore Discriminant, D<0a24b<0D<0 \Rightarrow a^{2}-4 b<0 Now, f(x)=2x+af'(x)=2 x +a f(x)=2f''(x)=2 Also, f(x)+f(x)+f(x)=0f(x)+f'(x)+f''(x)=0 ...(i) x2+ax+b+2x+a+2=0\Rightarrow x^{2}+a x+b+2 x+a+2=0 x2+(a+2)x+b+a+2=0\Rightarrow x^{2}+(a+2) x+b+a+2=0 x=(a+2)±(a+2)24(a+b+2)2\therefore x=\frac{-(a+2) \pm \sqrt{(a+2)^{2}-4(a+b+2)}}{2} =(a+2)±a24b42=\frac{-(a+2) \pm \sqrt{a^{2}-4 b-4}}{2} Since, a24b<0a^{2}-4 b<0 a24b4<0\therefore a^{2}-4 b-4<0 Hence, E (i) has imaginary roots.