Solveeit Logo

Question

Mathematics Question on Ellipse

Let f(x)=x2+9f(x) = x^2 + 9, g(x)=xx9g(x) = \frac{x}{x-9}, and a=fg(10),b=gf(3).a = f \circ g(10), \, b = g \circ f(3).
If ee and ll denote the eccentricity and the length of the latus rectum of the ellipse x2a+y2b=1,\frac{x^2}{a} + \frac{y^2}{b} = 1, then 8e2+l28e^2 + l^2 is equal to:

A

16

B

8

C

6

D

12

Answer

8

Explanation

Solution

**Step 1: Compute **a=f(g(10))a = f(g(10))
Given _g(x) = _xx9\frac{x}{x-9}, compute g(10) :

g(10)=10109=101=10.g(10) = \frac{10}{10 - 9} = \frac{10}{1} = 10.

Now, substitute g(10) into f(x)=x2+9:f(x) = x^2 + 9:

f(g(10))=f(10)=102+9=100+9=109.f(g(10)) = f(10) = 10^2 + 9 = 100 + 9 = 109.

Thus: a = 109.

**Step 2: Compute **b=g(f(3))b = g(f(3))
Given f(x)=x2+9f(x) = x^2 + 9, compute f(3) :

f(3)=32+9=9+9=18.f(3) = 3^2 + 9 = 9 + 9 = 18.

Now, substitute f(3) into g(x)=xx9:g(x) = \frac{x}{x-9}:

g(f(3))=g(18)=18189=189=2.g(f(3)) = g(18) = \frac{18}{18 - 9} = \frac{18}{9} = 2.

Thus: b = 2.

Step 3: Equation of the ellipse The equation of the ellipse is:

x2a+y2b=1.\frac{x^2}{a} + \frac{y^2}{b} = 1.

Substitute a = 109 and b = 2 :

x2109+y22=1.\frac{x^2}{109} + \frac{y^2}{2} = 1.

Step 4: Eccentricity e The eccentricity of an ellipse is given by:

e2=1smaller denominatorlarger denominator.e^2 = 1 - \frac{\text{smaller denominator}}{\text{larger denominator}}.

Here, the larger denominator is a = 109 , and the smaller denominator is b = 2 :

e2=12109.e^2 = 1 - \frac{2}{109}.

e2=1091092109=107109.e^2 = \frac{109}{109} - \frac{2}{109} = \frac{107}{109}.

**Step 5: Length of the latus rectum **\ell The length of the latus rectum of an ellipse is given by:

=2ba.\ell = \frac{2b}{\sqrt{a}}.

Substitute b = 2 and a = 109 :

=2(2)109=4109.\ell = \frac{2(2)}{\sqrt{109}} = \frac{4}{\sqrt{109}}.

**Step 6: Compute **8e2+28e^2 + \ell^2 First, compute 2:\ell^2:

2=(4109)2=16109.\ell^2 = \left(\frac{4}{\sqrt{109}}\right)^2 = \frac{16}{109}.

Now compute 8e2:8e^2:

8e2=8×107109=856109.8e^2 = 8 \times \frac{107}{109} = \frac{856}{109}.

Finally:

8e2+2=856109+16109=872109=8.8e^2 + \ell^2 = \frac{856}{109} + \frac{16}{109} = \frac{872}{109} = 8.

Final Answer: Option (2).