Question
Mathematics Question on Ellipse
Let f(x)=x2+9, g(x)=x−9x, and a=f∘g(10),b=g∘f(3).
If e and l denote the eccentricity and the length of the latus rectum of the ellipse ax2+by2=1, then 8e2+l2 is equal to:
16
8
6
12
8
Solution
**Step 1: Compute **a=f(g(10))
Given _g(x) = _x−9x, compute g(10) :
g(10)=10−910=110=10.
Now, substitute g(10) into f(x)=x2+9:
f(g(10))=f(10)=102+9=100+9=109.
Thus: a = 109.
**Step 2: Compute **b=g(f(3))
Given f(x)=x2+9, compute f(3) :
f(3)=32+9=9+9=18.
Now, substitute f(3) into g(x)=x−9x:
g(f(3))=g(18)=18−918=918=2.
Thus: b = 2.
Step 3: Equation of the ellipse The equation of the ellipse is:
ax2+by2=1.
Substitute a = 109 and b = 2 :
109x2+2y2=1.
Step 4: Eccentricity e The eccentricity of an ellipse is given by:
e2=1−larger denominatorsmaller denominator.
Here, the larger denominator is a = 109 , and the smaller denominator is b = 2 :
e2=1−1092.
e2=109109−1092=109107.
**Step 5: Length of the latus rectum **ℓ The length of the latus rectum of an ellipse is given by:
ℓ=a2b.
Substitute b = 2 and a = 109 :
ℓ=1092(2)=1094.
**Step 6: Compute **8e2+ℓ2 First, compute ℓ2:
ℓ2=(1094)2=10916.
Now compute 8e2:
8e2=8×109107=109856.
Finally:
8e2+ℓ2=109856+10916=109872=8.
Final Answer: Option (2).