Solveeit Logo

Question

Mathematics Question on Application of derivatives

Let f(x)=x2+2x+2,g(x)=x2+2x1f(x) = x^2 + 2x + 2, g(x) = - x^2 + 2x - 1 and a,ba, b be the extreme values of f(x),g(x)f(x), g(x) respectively. If cc is the extreme value of fg(x)\frac{f}{g} (x) (for x \neq 1), then a+2b+5c+4a + 2b + 5c + 4 =

A

2

B

1

C

4

D

3

Answer

4

Explanation

Solution

Given, f(x)=x2+2x+2f(x) =x^{2}+2 x+2 =x2+2x+1+1=(x+1)2+1=x^{2}+2 x+1+1=(x+1)^{2}+1 Here, f(x)[1,)f(x) \in[1, \infty) and g(x)=x2+2x1g(x)=-x^{2}+2 x-1 =(x22x+1)=(x1)2=-\left(x^{2}-2 x+1\right)=-(x-1)^{2} Here, g(x)(,0]g(x) \in(-\infty, 0] Now, fg(x)=x2+2x+2x2+2x1=y\frac{f}{g}(x)=\frac{x^{2}+2 x+2}{-x^{2}+2 x-1}=y x2+2x+2=yx2+2xyy\Rightarrow x^{2}+2 x+2=-y x^{2}+2 x y-y x2+yx2+2x2xy+2+y=0\Rightarrow x^{2}+y x^{2}+2 x-2 x y+2+y=0 x2(1+y)+(22y)x+2+y=0\Rightarrow x^{2}(1+y)+(2-2 y) x+2+y=0 D0\because D \geq 0 (22y)24(2+y)(1+y)0\therefore (2-2 y)^{2}-4(2+y)(1+y) \geq 0 4+4y28y4(2+y)(1+y)>0 4+4 y^{2}-8 y-4(2+y)(1+y) > 0 y15\Rightarrow y \leq-\frac{1}{5} So, fg(x)(,15] \frac{f}{g}(x) \in\left(-\infty,-\frac{1}{5}\right] So, a=1,b=0a=1, b=0 and c=15c=-\frac{1}{5} Hence, a+2b+5c+4a+2 b+5 c+4 =1+0+5(15)+4=1+0+5\left(-\frac{1}{5}\right)+4 =11+4=4=1-1+4=4