Question
Mathematics Question on Application of derivatives
Let f(x)=x2+2x+2,g(x)=−x2+2x−1 and a,b be the extreme values of f(x),g(x) respectively. If c is the extreme value of gf(x) (for x = 1), then a+2b+5c+4 =
A
2
B
1
C
4
D
3
Answer
4
Explanation
Solution
Given, f(x)=x2+2x+2 =x2+2x+1+1=(x+1)2+1 Here, f(x)∈[1,∞) and g(x)=−x2+2x−1 =−(x2−2x+1)=−(x−1)2 Here, g(x)∈(−∞,0] Now, gf(x)=−x2+2x−1x2+2x+2=y ⇒x2+2x+2=−yx2+2xy−y ⇒x2+yx2+2x−2xy+2+y=0 ⇒x2(1+y)+(2−2y)x+2+y=0 ∵D≥0 ∴(2−2y)2−4(2+y)(1+y)≥0 4+4y2−8y−4(2+y)(1+y)>0 ⇒y≤−51 So, gf(x)∈(−∞,−51] So, a=1,b=0 and c=−51 Hence, a+2b+5c+4 =1+0+5(−51)+4 =1−1+4=4