Solveeit Logo

Question

Mathematics Question on Differentiability

Let f(x)=tan1xf(x) = \tan^{-1}x. Then f(x)+f(x)f'(x) + f''(x) is = 00, when xx is equal to

A

00

B

+1+1

C

ii

D

i-i

Answer

+1+1

Explanation

Solution

Given, f(x)=tan1xf(x)=\tan ^{-1} x
f(x)=11+x2\Rightarrow f^{\prime}(x)=\frac{1}{1+x^{2}}
f(x)=1(1+x2)2(2x)=2x(1+x2)2\Rightarrow f^{\prime \prime}(x)=-\frac{1}{\left(1+x^{2}\right)^{2}}(2 x)=-\frac{2 x}{\left(1+x^{2}\right)^{2}}
f(x)+f(x)=0\because f^{\prime}(x)+f^{\prime \prime}(x)=0
11+x22x(1+x2)2=0\therefore \frac{1}{1+x^{2}}-\frac{2 x}{\left(1+x^{2}\right)^{2}}=0
(1+x2)2x(1+x2)2=0\Rightarrow \frac{\left(1+x^{2}\right)-2 x}{\left(1+x^{2}\right)^{2}}=0
(1x)2=0x=1\Rightarrow (1-x)^{2}=0 \Rightarrow x=1

So, the correct answer is (B): +1