Question
Mathematics Question on Differentiability
Let f(x)=tan−1x. Then f′(x)+f′′(x) is = 0, when x is equal to
A
0
B
+1
C
i
D
−i
Answer
+1
Explanation
Solution
Given, f(x)=tan−1x
⇒f′(x)=1+x21
⇒f′′(x)=−(1+x2)21(2x)=−(1+x2)22x
∵f′(x)+f′′(x)=0
∴1+x21−(1+x2)22x=0
⇒(1+x2)2(1+x2)−2x=0
⇒(1−x)2=0⇒x=1
So, the correct answer is (B): +1