Solveeit Logo

Question

Mathematics Question on Limits

Letf(x)=limrx(2r2[(f(r))2f(x)f(r)]r2x2r3ef(r)r)f(x) = \sqrt{\lim_{r \to x} \left( \frac{2r^2 \left[ (f(r))^2 - f(x) f(r) \right]}{r^2 - x^2} - r^3 e^{\frac{f(r)}{r}} \right)}be differentiable in (,0)(0,)(-\infty, 0) \cup (0, \infty) and f(1)=1f(1) = 1. Then the value of eaea, such that f(a)=0f(a) = 0, is equal to ______.

Answer

Step 1: Evaluate f2(x)f^2(x):
f2(x)=limrx(2x2f(r))2f(x)f(r)xx2r2rxrf^2(x) = \lim_{r \to x} \frac{(2x^2f(r))^2 - f(x)f(r)x}{x^2 - r^2} \cdot \frac{r - x}{r}
Simplifying this expression using L'Hôpital's Rule and differentiating the terms with respect to rr, we eventually get:
f2(x)=2xf(x)f(x)xexf^2(x) = 2x f(x)f'(x) - xe^{x}

Step 2: Rewrite the equation:
We now have the differential equation:
f(x)2=xf(x)f(x)xexf(x)^2 = x f(x)f'(x) - xe^{x}

Step 3: Substitute y=f(x)y = f(x):
This substitution gives y=f(x)y = f(x), so that dydx=f(x)\frac{dy}{dx} = f'(x), and the equation becomes:
y2=xydydxxexy^2 = xy \frac{dy}{dx} - xe^x

Step 4: Separate variables and simplify:
Let y=vxy = vx, so that dydx=v+xdvdx\frac{dy}{dx} = v + x \frac{dv}{dx}. Substitute into the equation:
v2x2=xex(v+xdvdx)xexv^2x^2 = x e^{x}(v + x \frac{dv}{dx}) - xe^x

Step 5: Solve the resulting differential equation:
By separating variables and integrating both sides, we obtain:
v2dv=dxx\int v^2 \, dv = \int \frac{dx}{x}

Step 6: Integrate:
Integrating both sides, we get:
ev=lnx+ce^v = \ln|x| + c

Step 7: Apply initial condition:
Given f(1)=1f(1) = 1, substitute x=1x = 1 and y=1y = 1 to find cc:
e1=ln1+c=c=2e^1 = \ln 1 + c = c = 2

Step 8: Find aa such that f(a)=0f(a) = 0:
When y=0y = 0, we solve for v=0v = 0:
a=2ea = -\frac{2}{e}

Step 9: Calculate eaea:
ea=e2e=2ea = e \cdot -\frac{2}{e} = -2

Thus, ea=2ea = 2.

The Correct Answer is : 2