Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Let f(x)=px2+qx+rf (x) = px^2 + qx + r , where p,q,rp, q, r are constants and p0p \neq 0 . If f(5)=3f(2)f (5) = -3 f (2) and f(4)=0f (-4) = 0 , then the other root of ff is

A

3

B

-7

C

-2

D

2

Answer

3

Explanation

Solution

f(x)=px2+qx+rf(x)=p x^{2}+q x +r f(4)=0f(-4)=0 16p4q+r=0\Rightarrow \, 16 p-4 q +r=0 ...(i) One root is x=4x=-4 and f(5)=3f(2)f(5)=-3 f(2) 25p+5q+r=3(4p+2q+r)25 p+5 q +r=-3(4 p+2 q +r) 37p+11q+4r=0\Rightarrow 37 p+11 q+4 r=0 ...(ii) E (ii) - E (i), we get 27p+27q=0\Rightarrow -27 p+27 q =0 p=0\Rightarrow p =0 Then, equation is px2+qx+r=0p x^{2}+q x +r=0 Roots =4,α=-4, \alpha Sum of roots =4x+α=pq=1=-4 x+\alpha=-\frac{p}{q}=-1 So, another root α=3\alpha=3.