Solveeit Logo

Question

Question: Let f (x) = \(\lim_{x \rightarrow 0}\) If f (x) is continuous at x = 0 then k =...

Let f (x) = limx0\lim_{x \rightarrow 0} If f (x) is continuous at x = 0 then k =

A

(cosαr2+isinαr2)\left( \cos\frac{\alpha}{r^{2}} + i\sin\frac{\alpha}{r^{2}} \right)

B

(cos2αr2+isin2αr2)\left( \cos\frac{2\alpha}{r^{2}} + i\sin\frac{2\alpha}{r^{2}} \right)

C

1

D

0

Answer

(cosαr2+isinαr2)\left( \cos\frac{\alpha}{r^{2}} + i\sin\frac{\alpha}{r^{2}} \right)

Explanation

Solution

Q f(0) = f(0+) k = limh0\lim _ { h \rightarrow 0 } ⇒ k = π/5