Solveeit Logo

Question

Question: Let \[f(x) = \left\\{ {x^2}\left| {\cos \dfrac{\pi }{2}} \right|;x \ne 0 \\\ 0;x = 0 \\\ ...

Let f(x) = \left\\{ {x^2}\left| {\cos \dfrac{\pi }{2}} \right|;x \ne 0 \\\ 0;x = 0 \\\ \right. xRx \in \mathbb{R},

thenfisthen f is

A) Differentiable both at x=0x = 0 and at x=2x = 2.
B) Differentiable at x=0x = 0 but not differentiable at x=2x = 2.
C) Not differentiable at x=0x = 0 but differentiable at x=2x = 2.
D) Differentiable neither at x=0x = 0 nor at x=2x = 2.

Explanation

Solution

Function ff is differentiable at any point xx if and only if left hand derivative is equal to right hand derivative. First check for x=0x = 0 that left hand derivative is equal to right hand derivative or not, and then check for x=2x = 2 similarly as x=0x = 0. You can also use the graph method for differentiability.

Complete step-by-step answer:
For x=0x = 0,ff is differentiable if and only if LHD=RHDLHD = RHD (left hand derivative = right hand derivative).
LHD=f(0)=limh0f(0h)f(0)hLHD = f'({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}
=limh0(h)2cos(πh)0h= \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( { - h} \right)}^2}\left| {\cos \left( {\dfrac{\pi }{{ - h}}} \right)} \right| - 0}}{{ - h}} =limh0(h)cos(πh)=(0).[1,1]=0 = \mathop {\lim }\limits_{h \to {0^{}}} \left( { - h} \right)\left| {\cos \left( {\dfrac{\pi }{{ - h}}} \right)} \right| = \left( { - 0} \right).\left[ { - 1,1} \right] = 0
RHD=f(0+)=limh0f(0+h)f(0)hRHD = f'({0^ + }) = \mathop {\lim }\limits_{h \to {0^{}}} \dfrac{{f(0 + h) - f(0)}}{{ - h}}
=limh0h2cosπh0h= \mathop {\lim }\limits_{h \to 0} \dfrac{{{h^2}\left| {\cos \dfrac{\pi }{h}} \right| - 0}}{h} =limh0hcosπh=0 = \mathop {\lim }\limits_{h \to 0} h\left| {\cos \dfrac{\pi }{h}} \right| = 0
Hence LHD=RHDLHD = RHD and ff is differentiable at x=0x = 0.
Similarly, we check for x=2x = 2.
LHD=f(2)=limh0f(2h)f(2)hLHD = f'({2^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(2 - h) - f(2)}}{{ - h}}
=limh0(2h)2cos(π2h)22cosπ2h= \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}\left| {\cos \left( {\dfrac{\pi }{{2 - h}}} \right)} \right| - {2^2}\cos \dfrac{\pi }{2}}}{{ - h}}
=limh0(2h)2cos(π2h)0h= \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}\cos \left( {\dfrac{\pi }{{2 - h}}} \right) - 0}}{h}, convert cos\cos into sin\sin form
=limh0(2h)2h.sin[π2π2h]= \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h}.\sin \left[ {\dfrac{\pi }{2} - \dfrac{\pi }{{2 - h}}} \right]
=limh0(2h)2h.sin[hπ2(2h)]= \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h}.\sin \left[ {\dfrac{{ - h\pi }}{{2(2 - h)}}} \right], multiply and divide by πh2(2h)\dfrac{{ - \pi h}}{{2(2 - h)}}
=limh0(2h)2h×πh2(2h).[sin[πh2(2h)]πh2(2h)]= \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h} \times \dfrac{{ - \pi h}}{{2(2 - h)}}.\left[ {\dfrac{{\sin \left[ {\dfrac{{ - \pi h}}{{2(2 - h)}}} \right]}}{{\dfrac{{ - \pi h}}{{2(2 - h)}}}}} \right], as we know lima0sinaa=1\mathop {\lim }\limits_{a \to 0} \dfrac{{\sin a}}{a} = 1
LHD=πLHD = - \pi
RHD=f(2+)=limh0f(2+h)f(2)hRHD = f'({2^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(2 + h) - f(2)}}{h}
=limh0(2+h)2cos(π2+h)22cosπ2h= \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}\left| {\cos \left( {\dfrac{\pi }{{2 + h}}} \right)} \right| - {2^2}\cos \dfrac{\pi }{2}}}{h}
=limh0(2+h)2cos(π2+h)0h= \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}\cos \left( {\dfrac{\pi }{{2 + h}}} \right) - 0}}{h}, convert cos\cos into sin\sin form
=limh0(2+h)2h.sin[π2π2+h]= \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h}.\sin \left[ {\dfrac{\pi }{2} - \dfrac{\pi }{{2 + h}}} \right]
=limh0(2+h)2h.sin[hπ2(2+h)]= \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h}.\sin \left[ {\dfrac{{h\pi }}{{2(2 + h)}}} \right] , multiply and divide by πh2(2+h)\dfrac{{\pi h}}{{2(2 + h)}}
=limh0(2+h)2h×πh2(2+h).[sin[πh2(2+h)]πh2(2+h)]= \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h} \times \dfrac{{\pi h}}{{2(2 + h)}}.\left[ {\dfrac{{\sin \left[ {\dfrac{{\pi h}}{{2(2 + h)}}} \right]}}{{\dfrac{{\pi h}}{{2(2 + h)}}}}} \right], as we know lima0sinaa=1\mathop {\lim }\limits_{a \to 0} \dfrac{{\sin a}}{a} = 1
RHD=πRHD = \pi
Hence LHDRHDLHD \ne RHD, then ff is not differentiable at x=2x = 2.

Then the correct answer is option B.

Note: Graph method for checking differentiability: A function ff is differentiable at x=ax = a whenever f(a)f'(a) exists, which means that ff has a tangent line at (a,f(a))(a,f(a)) and thus ff is locally linear at the value x=ax = a. Informally, this means that the function looks like a line when viewed up close at (a,f(a))(a,f(a)) and that there is not a corner point or cusp at (a,f(a))(a,f(a)).To use graph first need to draw accurate graph of given function.