Solveeit Logo

Question

Question: Let \(f(x) = {\left( {\sin \left( {{{\tan }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \rig...

Let f(x)=(sin(tan1x)+sin(cot1x))21f(x) = {\left( {\sin \left( {{{\tan }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right)^2} - 1 , x>1\left| x \right| > 1 , if dydx=12ddx(sin1(f(x)))\dfrac{{dy}}{{dx}} = \dfrac{1}{2}\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}\left( {f(x)} \right)} \right) and y(3)=π6y\left( {\sqrt 3 } \right) = \dfrac{\pi }{6} , then y(3)y\left( { - \sqrt 3 } \right) is equal to :
(A) π6 - \dfrac{\pi }{6}
(B) 5π6\dfrac{{5\pi }}{6}
(C) 2π3\dfrac{{2\pi }}{3}
(D) π3\dfrac{\pi }{3}

Explanation

Solution

Since in the given question we need to determine the value of y(3)y\left( { - \sqrt 3 } \right) so that means we need to find the value of y(x)y(x) , in the first part we will be determine the value of y(x)y(x) by integrating dydx\dfrac{{dy}}{{dx}} and it can seen that y(x)y(x) involves the function f(x)f(x) that means we need to simplify it get the value that can be substituted to get the required value of y(x)y(x).

Complete step-by-step answer:
Given
dydx=12ddx(sin1(f(x)))\dfrac{{dy}}{{dx}} = \dfrac{1}{2}\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}\left( {f(x)} \right)} \right)
Integrating both side
dydx=12ddx(sin1(f(x)))\int {\dfrac{{dy}}{{dx}} = \int {\dfrac{1}{2}} } \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}\left( {f(x)} \right)} \right)
Integrating of any differential function ddx(g(x))=g(x)+c\dfrac{d}{{dx}}\left( {g(x)} \right) = g(x) + c
So by using this
y=12sin1(f(x))+cy = \dfrac{1}{2}{\sin ^{ - 1}}(f(x)) + c
Now we know that f(x)=(sin(tan1x)+sin(cot1x))21f(x) = {\left( {\sin \left( {{{\tan }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right)^2} - 1
Now we made some modification in given above equation
Let assume tan1x=θ{\tan ^{ - 1}}x = \theta ( this assumption we made just to making easy to this equation)
And we know that
tan1x+cot1x=π2{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}
From this we can written as cot1x=π2tan1x{\cot ^{ - 1}}x = \dfrac{\pi }{2} - {\tan ^{ - 1}}x and we assume tan1x=θ{\tan ^{ - 1}}x = \theta
So by putting this thing in f(x)=(sin(tan1x)+sin(cot1x))21f(x) = {\left( {\sin \left( {{{\tan }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right)^2} - 1
f(x)=(sinθ+sin(π2θ))21f(x) = {\left( {\sin \theta + \sin \left( {\dfrac{\pi }{2} - \theta } \right)} \right)^2} - 1
Using
cot1x=π2tan1x=π2θ\because {\cot ^{ - 1}}x = \dfrac{\pi }{2} - {\tan ^{ - 1}}x = \dfrac{\pi }{2} - \theta
Now, we know that sin(π2θ)=cosθ\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta
So, f(x)=(sinθ+cosθ)21f(x) = {\left( {\sin \theta + \cos \theta } \right)^2} - 1
Now, we know that (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
(sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ{\left( {\sin \theta + \cos \theta } \right)^2} = {\sin ^2}\theta + {\cos ^2}\theta + 2\sin \theta \cos \theta
Now sin2θ+cos2θ=1\because {\sin ^2}\theta + {\cos ^2}\theta = 1
So from here we get
\Rightarrow f(x)=1+2sinθcosθ1f(x) = 1 + 2\sin \theta \cos \theta - 1
Simplifying the above, we get
\Rightarrow f(x)=2sinθcosθf(x) = 2\sin \theta \cos \theta
Using
2sinθcosθ=sin2θ\because 2\sin \theta \cos \theta = \sin 2\theta
we get
f(x)=sin2θ\therefore f(x) = \sin 2\theta
Now, put this value in
y=12sin1(f(x))+cy = \dfrac{1}{2}{\sin ^{ - 1}}(f(x)) + c
we get
\Rightarrow y(x)=12(sin1sin2θ)+cy(x) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin 2\theta } \right) + c
Now replace value of θ\theta by tan1x{\tan ^{ - 1}}x
So,
\Rightarrow y(x)=12(sin1sin(2tan1x))+cy(x) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin (2{{\tan }^{ - 1}}x)} \right) + c
Now given that y(3)=π6y\left( {\sqrt 3 } \right) = \dfrac{\pi }{6}
Hence,
\Rightarrow π6=12(sin1sin(2tan13))+c\dfrac{\pi }{6} = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin (2{{\tan }^{ - 1}}\sqrt 3 )} \right) + c
we get
tan1(3)=π3\because {\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{\pi }{3}
By putting this value we get
\Rightarrow π6=12(sin1sin2π3)+c\dfrac{\pi }{6} = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin \dfrac{{2\pi }}{3}} \right) + c
Simplifying the above
\Rightarrow π6=12(sin1(32))+c\dfrac{\pi }{6} = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right) + c
We get,
\Rightarrow π6=12×π3+c\dfrac{\pi }{6} = \dfrac{1}{2} \times \dfrac{\pi }{3} + c
From here
c=0c = 0
Now our y(x)=12(sin1sin(2tan1x))y(x) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin (2{{\tan }^{ - 1}}x)} \right)
Now we have to find y(3)y\left( { - \sqrt 3 } \right)
So put x=3x = - \sqrt 3 in y(x)=12(sin1sin(2tan1x))y(x) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin (2{{\tan }^{ - 1}}x)} \right)
We get
\Rightarrow y(3)=12(sin1sin((2tan1(3)))y( - \sqrt 3 ) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin \left( {(2{{\tan }^{ - 1}}( - \sqrt 3 )} \right)} \right)
using
tan1(3)=π3\because {\tan ^{ - 1}}( - \sqrt 3 ) = - \dfrac{\pi }{3}
By putting this we get
\Rightarrow y(3)=12(sin1sin(2π3))y( - \sqrt 3 ) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\sin \left( { - \dfrac{{2\pi }}{3}} \right)} \right)
using
sin(2π3)=32\because \sin \left( { - \dfrac{{2\pi }}{3}} \right) = - \dfrac{{\sqrt 3 }}{2}
By putting this we get
\Rightarrow y(3)=12(sin1(32))y( - \sqrt 3 ) = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)
using
sin1(32)=π3\because {\sin ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right) = - \dfrac{\pi }{3}
By putting this we get
\Rightarrow y(3)=12(π3)y( - \sqrt 3 ) = \dfrac{1}{2}\left( { - \dfrac{\pi }{3}} \right)
So it become
\Rightarrow y(3)=π6y( - \sqrt 3 ) = - \dfrac{\pi }{6}

So option A is the correct answer.

Note: The best way to determine the specific value involving trigonometric function is to consider or to convert into the short term as in this the function f(x)f(x) is simplified to short term that makes the solution extremely easy to solve otherwise it will be quite difficult to determine the result and if we need to determine the value of constant in that case we use the initial condition as in the above question.