Solveeit Logo

Question

Mathematics Question on Differentiability

Let f(x)=\left\\{ \begin{matrix} \frac{\tan x-\cot x}{x-\frac{\pi }{4}}, & x\ne \frac{\pi }{4} \\\ a, & x=\frac{\pi }{4} \\\ \end{matrix} \right. the value of a so that f(x)f(x) is continuous at x=π4x=\frac{\pi }{4}

A

2

B

4

C

3

D

1

Answer

4

Explanation

Solution

A function is said to be a continuous function at x=ax=a, if
LHL=RHL=LHL = RHL = Value of function at x=a.x=a .
Since, f(x)={tanxcotxxπ4,xπ4 a,x=π4f(x)=\begin{cases}\frac{\tan x-\cot x}{x-\frac{\pi}{4}}, & x \neq \frac{\pi}{4} \\\ a, & x=\frac{\pi}{4}\end{cases}
LHL=limh0f(π4h)LHL =\displaystyle\lim _{h \rightarrow 0} f\left(\frac{\pi}{4}-h\right)
=limh0tan(π4h)cot(π4h)π4hπ4=\displaystyle\lim _{h \rightarrow 0} \frac{\tan \left(\frac{\pi}{4}-h\right)-\cot \left(\frac{\pi}{4}-h\right)}{\frac{\pi}{4}-h-\frac{\pi}{4}}
Applying L' Hospital's rule
=limh0sec2(π4h)+cosec2(π4h)1=\displaystyle\lim _{h \rightarrow 0} \frac{\sec ^{2}\left(\frac{\pi}{4}-h\right)+\text{cosec}^{2}\left(\frac{\pi}{4}-h\right)}{1}
=2+2=4.=2+2=4 .
RHL=limh0f(π4+h)RHL =\displaystyle\lim _{h \rightarrow 0} f\left(\frac{\pi}{4}+h\right)
=limh0tan(π4+h)cot(π4+h)π4+hπ4=\displaystyle\lim _{h \rightarrow 0} \frac{\tan \left(\frac{\pi}{4}+h\right)-\cot \left(\frac{\pi}{4}+h\right)}{\frac{\pi}{4}+h-\frac{\pi}{4}}
=limh0sec2(π4+h)+cosec2(π4+h)1=\displaystyle\lim _{h \rightarrow 0} \frac{\sec ^{2}\left(\frac{\pi}{4}+h\right)+\text{cosec}^{2}\left(\frac{\pi}{4}+h\right)}{1}
=2+2=4=2+2=4
\because Function is continuous at x=π4x=\frac{\pi}{4}.
f(π4)=RHL=LHL\therefore f\left(\frac{\pi}{4}\right)= RHL = LHL
a=4\therefore a=4
Alternate Method : f(x)\because f(x) is continuous function at x=π4x=\frac{\pi}{4}.
limxπ4tanxcotxxπ4=a\therefore \displaystyle\lim _{x \rightarrow \frac{\pi}{4}} \frac{\tan x-\cot x}{x-\frac{\pi}{4}}=a
Applying L' Hospital's rule
limxπ4sec2x+cosec2x1=a\Rightarrow \displaystyle\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sec ^{2} x+\text{cosec}^{2} x}{1}=a
a=2+2=4\Rightarrow a=2+2=4

So, the correct option is (B): 4