Question
Mathematics Question on Differentiability
Let f(x)=\left\\{ \begin{matrix} \frac{\tan x-\cot x}{x-\frac{\pi }{4}}, & x\ne \frac{\pi }{4} \\\ a, & x=\frac{\pi }{4} \\\ \end{matrix} \right. the value of a so that f(x) is continuous at x=4π
2
4
3
1
4
Solution
A function is said to be a continuous function at x=a, if
LHL=RHL= Value of function at x=a.
Since, f(x)={x−4πtanx−cotx, a,x=4πx=4π
LHL=h→0limf(4π−h)
=h→0lim4π−h−4πtan(4π−h)−cot(4π−h)
Applying L' Hospital's rule
=h→0lim1sec2(4π−h)+cosec2(4π−h)
=2+2=4.
RHL=h→0limf(4π+h)
=h→0lim4π+h−4πtan(4π+h)−cot(4π+h)
=h→0lim1sec2(4π+h)+cosec2(4π+h)
=2+2=4
∵ Function is continuous at x=4π.
∴f(4π)=RHL=LHL
∴a=4
Alternate Method : ∵f(x) is continuous function at x=4π.
∴x→4πlimx−4πtanx−cotx=a
Applying L' Hospital's rule
⇒x→4πlim1sec2x+cosec2x=a
⇒a=2+2=4
So, the correct option is (B): 4