Question
Mathematics Question on Integrals of Some Particular Functions
Let f(x)=∫(x2+1)(x2+3)2xdx. If f(3)=21(loge5−loge6), then f(4) is equal to
A
loge17−loge18
B
loge19−loge20
C
21(loge19−loge17)
D
21(loge17−loge19)
Answer
21(loge17−loge19)
Explanation
Solution
The correct option is (D) : 21(loge17−loge19)
Put x2=t
∫(t+1)(t+3)dt
=21∫(t+11−t+31)dt
f(x)=21ln(x2+3x2+1)+C
f(3)=21(ln10−ln12)+C
⇒C=0
f(4)=21ln(1917)