Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

Let f(x)=2x(x2+1)(x2+3)dxf(x)=\int \frac{2 x}{\left(x^2+1\right)\left(x^2+3\right)} d x. If f(3)=12(loge5loge6)f(3)=\frac{1}{2}\left(\log _e 5-\log _e 6\right), then f(4)f(4) is equal to

A

loge17loge18\log _{ e } 17-\log _{ e } 18

B

loge19loge20\log _e 19-\log _e 20

C

12(loge19loge17)\frac{1}{2}\left(\log _e 19-\log _e 17\right)

D

12(loge17loge19)\frac{1}{2}\left(\log _e 17-\log _e 19\right)

Answer

12(loge17loge19)\frac{1}{2}\left(\log _e 17-\log _e 19\right)

Explanation

Solution

The correct option is (D) : 12(loge17loge19)\frac{1}{2}\left(\log _e 17-\log _e 19\right)
Put x2=t
dt(t+1)(t+3)\frac{dt}{(t+1)(t+3)}
​=12\frac{1}{2}​∫(1t+1\frac{1}{t+1}​−1t+3\frac{1}{t+3}​)dt
f(x)=12\frac{1}{2}​ln(x2+1x2+3\frac{x^2+1}{x^2+3})+C
f(3)=12\frac{1}{2}​(ln10−ln12)+C
⇒C=0
f(4)=12\frac{1}{2}​ln(1719\frac{17}{19}​)