Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

Let f(x) =1x2t2dt\int_1^x \sqrt{2-t^2}dt Then, the real roots of the equation x2f(x)=0x^2-f'(x)=0 are

A

±\pm1

B

±12\pm\frac{1}{\sqrt 2}

C

±12\pm\frac{1}{ 2}

D

0 and 1

Answer

±\pm1

Explanation

Solution

Given, f(x) =1x2t2dtf(x)=2x2\int_1^x \sqrt{2-t^2}dt \, \Rightarrow \, \, f'(x)=\sqrt{2-x^2}
Also, x2f(x)=0x^2-f'(x)=0
x62=2x2x4=2x2\therefore \, \, \, \, \, x62=\sqrt{2-x^2} \, \Rightarrow \, \, x^4=2-x^2
x4+x22=0x=±1\Rightarrow \, \, \, \, x^4+x^2-2=0 \, \, \, \Rightarrow \, \, x=\pm 1