Solveeit Logo

Question

Mathematics Question on limits and derivatives

Let f(x)=0x(t+sin(1et))dt,xR.f(x) = \int_{0}^{x} \left( t + \sin\left(1 - e^t\right) \right) \, dt, \, x \in \mathbb{R}. Then limx0f(x)x3\lim_{x \to 0} \frac{f(x)}{x^3} is equal to:

A

16\frac{1}{6}

B

16\frac{-1}{6}

C

23\frac{-2}{3}

D

23\frac{2}{3}

Answer

16\frac{-1}{6}

Explanation

Solution

We are tasked with evaluating the following limit:

limx0f(x)x3\lim_{x \to 0} \frac{f(x)}{x^3} where f(x)=0x(t+sin(1et))dtf(x) = \int_{0}^{x} \left(t + \sin \left(1 - e^t\right)\right) \, dt.

To solve this, we apply L’Hopital’s Rule. First, we compute the derivative of f(x)f(x):

f(x)=x+sin(1ex)f'(x) = x + \sin(1 - e^x)

Now, applying L’Hopital’s Rule to evaluate the limit:

limx0f(x)x3=limx0f(x)3x2\lim_{x \to 0} \frac{f(x)}{x^3} = \lim_{x \to 0} \frac{f'(x)}{3x^2}

This becomes:

limx0x+sin(1ex)3x2\lim_{x \to 0} \frac{x + \sin(1 - e^x)}{3x^2}

We apply L’Hopital’s Rule again:

limx01+(sin(1ex))(ex)+cos(1ex)ex6x\lim_{x \to 0} \frac{1 + \left(-\sin(1 - e^x)\right) \cdot \left(-e^x\right) + \cos(1 - e^x) \cdot e^x}{6x}

Evaluating this at x=0x = 0:

limx0sin(1ex)ex+cos(1ex)ex6=16\lim_{x \to 0} \frac{-\sin(1 - e^x) \cdot e^x + \cos(1 - e^x) \cdot e^x}{6} = \frac{-1}{6}

Thus, the value of the limit is:

16-\frac{1}{6}