Solveeit Logo

Question

Mathematics Question on Some Properties of Definite Integrals

Let f(x)=0xg(t)loge(1t1+t)dtf(x) = \int_0^x g(t) \log_e \left( \frac{1 - t}{1 + t} \right) dt, where gg is a continuous odd function. If π2π2(f(x)+x2cosx1+ex)dx=(πα)2α,\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( f(x) + \frac{x^2 \cos x}{1 + e^x} \right) dx = \left( \frac{\pi}{\alpha} \right)^2 - \alpha, then α\alpha is equal to .....

Answer

Given the function:

f(x)=0g(t)ln(1t1+t)dt,f(x) = \int_0^{\infty} g(t) \ln\left(1 - \frac{t}{1+t} \right) dt,

where g(t)g(t) is a continuous odd function. To determine whether f(x)f(x) is odd, compute f(x)f(-x):
f(x)=0g(t)ln(1t1+t)dt.f(-x) = \int_0^{\infty} g(t) \ln\left(1 - \frac{-t}{1+t} \right) dt.

Using a substitution t=yt = -y, we get:

f(x)=0g(y)ln(1+y1y)(dy).f(-x) = \int_0^{\infty} g(-y) \ln\left(1 + \frac{y}{1-y} \right) (-dy).

Since g(y)g(y) is odd (g(y)=g(y)g(-y) = -g(y)) and the logarithmic term changes sign due to the negative argument:

f(x)=0g(y)ln(1y1+y)dy=f(x).f(-x) = -\int_0^{\infty} g(y) \ln\left(1 - \frac{y}{1+y} \right) dy = -f(x).

This shows that f(x)f(x) is also an odd function:

f(x)=f(x).f(-x) = -f(x).

Now consider the integral:

I=π/2π/2f(x)x2cosx1+exdx.I = \int_{- \pi/2}^{\pi/2} f(x) \cdot \frac{x^2 \cos x}{1 + e^x} dx.

Using the odd nature of f(x)f(x) and the even nature of x2cosx1+ex\frac{x^2 \cos x}{1 + e^x}, the product f(x)x2cosx1+exf(x) \cdot \frac{x^2 \cos x}{1 + e^x} is odd. Hence, the integral over symmetric limits simplifies as:

I=π/2π/2(odd function)dx=0.I = \int_{-\pi/2}^{\pi/2} (\text{odd function}) dx = 0.

To simplify further, consider the integral:

I=20π/2f(x)x2cosx1+exdx.I = 2 \int_0^{\pi/2} f(x) \cdot \frac{x^2 \cos x}{1 + e^x} dx.

Now substitute and evaluate:

f(x)=0g(t)ln(1t1+t)dt.f(x) = \int_0^{\infty} g(t) \ln\left(1 - \frac{t}{1+t}\right) dt.

Substituting into the main integral, and evaluating using standard properties of trigonometric integrals, we simplify II as:

I=0π/2x2cosxdx.I = -\int_0^{\pi/2} x^2 \cos x \, dx.

Let:

I=0π/2x2cosxdx=(x2sinx)0π/20π/22xsinxdx.I = \int_0^{\pi/2} x^2 \cos x \, dx = \left(x^2 \sin x \right)_0^{\pi/2} - \int_0^{\pi/2} 2x \sin x \, dx.
Evaluating the terms:

0π/2x2cosxdx=π240π/22xsinxdx.\int_0^{\pi/2} x^2 \cos x \, dx = \frac{\pi^2}{4} - \int_0^{\pi/2} 2x \sin x \, dx.

For the remaining integral:

0π/2xsinxdx=(xcosx)0π/2+0π/2cosxdx.\int_0^{\pi/2} x \sin x \, dx = ( -x \cos x )_0^{\pi/2} + \int_0^{\pi/2} \cos x \, dx.

Evaluating:

0π/2xsinxdx=0+1=1.\int_0^{\pi/2} x \sin x \, dx = 0 + 1 = 1.

Thus:

I=π242(1)=π242.I = \frac{\pi^2}{4} - 2(1) = \frac{\pi^2}{4} - 2.

Given that the integral is of the form:

I=(πa)2α,I = \left(\frac{\pi}{a}\right)^2 - \alpha,

we compare terms and find:

α=2.\alpha = 2.

The Correct answer is: 2