Question
Mathematics Question on Some Properties of Definite Integrals
Let f(x)=∫0xg(t)loge(1+t1−t)dt, where g is a continuous odd function. If ∫−2π2π(f(x)+1+exx2cosx)dx=(απ)2−α, then α is equal to .....
Given the function:
f(x)=∫0∞g(t)ln(1−1+tt)dt,
where g(t) is a continuous odd function. To determine whether f(x) is odd, compute f(−x):
f(−x)=∫0∞g(t)ln(1−1+t−t)dt.
Using a substitution t=−y, we get:
f(−x)=∫0∞g(−y)ln(1+1−yy)(−dy).
Since g(y) is odd (g(−y)=−g(y)) and the logarithmic term changes sign due to the negative argument:
f(−x)=−∫0∞g(y)ln(1−1+yy)dy=−f(x).
This shows that f(x) is also an odd function:
f(−x)=−f(x).
Now consider the integral:
I=∫−π/2π/2f(x)⋅1+exx2cosxdx.
Using the odd nature of f(x) and the even nature of 1+exx2cosx, the product f(x)⋅1+exx2cosx is odd. Hence, the integral over symmetric limits simplifies as:
I=∫−π/2π/2(odd function)dx=0.
To simplify further, consider the integral:
I=2∫0π/2f(x)⋅1+exx2cosxdx.
Now substitute and evaluate:
f(x)=∫0∞g(t)ln(1−1+tt)dt.
Substituting into the main integral, and evaluating using standard properties of trigonometric integrals, we simplify I as:
I=−∫0π/2x2cosxdx.
Let:
I=∫0π/2x2cosxdx=(x2sinx)0π/2−∫0π/22xsinxdx.
Evaluating the terms:
∫0π/2x2cosxdx=4π2−∫0π/22xsinxdx.
For the remaining integral:
∫0π/2xsinxdx=(−xcosx)0π/2+∫0π/2cosxdx.
Evaluating:
∫0π/2xsinxdx=0+1=1.
Thus:
I=4π2−2(1)=4π2−2.
Given that the integral is of the form:
I=(aπ)2−α,
we compare terms and find:
α=2.
The Correct answer is: 2