Solveeit Logo

Question

Quantitative Ability and Data Interpretation Question on Algebra

Let f(x)=x2+1x21f(x)= \frac{x^2+1}{x^2-1} if x1,1,x \neq 1,-1, and 11 x=1,1x=1,-1. Let g(x)=x+1x1g(x)= \frac{x+1}{x-1} if x1x \neq 1 and 33 if x=1x=1.What is the minimum possible values of f(x)g(x)\frac{f(x)}{g(x)}?

A

12\frac{1}{2}

B

-1

C

14\frac{1}{4}

D

13\frac{1}{3}

E

1

Answer

13\frac{1}{3}

Explanation

Solution

The correct answer is option (D):13\frac{1}{3}