Solveeit Logo

Question

Mathematics Question on composite of functions

Let
f(x)=\frac{x−1}{x+1},x∈R− \left\\{0,−1,1\right\\}
If ƒn+1(x) = ƒ(ƒn(x)) for all n∈N, then ƒ6(6) + ƒ7(7) is equal to :

A

76\frac{7}{6}

B

32-\frac{3}{2}

C

712\frac{7}{12}

D

1112-\frac{11}{12}

Answer

32-\frac{3}{2}

Explanation

Solution

The correct answer is (B) : 32-\frac{3}{2}
f(x)=x1x+1f(f(x))=(x1x+1)1(x1x+1)+1=1xf(x) = \frac{x - 1}{x + 1} \Rightarrow f(f(x)) = \frac{\left(\frac{x - 1}{x + 1}\right) - 1}{\left(\frac{x - 1}{x + 1}\right) + 1} = -\frac{1}{x}
f3(x)=x+1x1f4(x)=(x1x+1+1)(x1x+11)=x\Rightarrow f^3(x) = -\frac{x + 1}{x - 1} \Rightarrow f^4(x) = -\frac{\left(\frac{x - 1}{x + 1} + 1\right)}{\left(\frac{x - 1}{x + 1} - 1\right)} = x
So, ƒ6(6) + ƒ7(7) = ƒ2(6) + ƒ3(7)
=167+171=96=32= -\frac{1}{6}-\frac{7+1}{7-1}= - \frac{9}{6}=-\frac{3}{2}