Solveeit Logo

Question

Mathematics Question on Probability

Let f(x)=k1+x2,<x<f(x)=\frac{k}{1+{{x}^{2}}},\,-\infty < x < \infty be the probability density of a random variable. Then, kk equals to

A

π\pi

B

π-\pi

C

1π\frac{1}{\pi }

D

11

Answer

1π\frac{1}{\pi }

Explanation

Solution

\because f(x)dx=1\int_{-\infty }^{\infty }{f(x)\,dx=1}
\therefore k1+x2dx=1\int_{-\infty }^{\infty }{\frac{k}{1+{{x}^{2}}}}\,dx=1
\Rightarrow 0k1+x2dx=1\int_{0}^{\infty }{\frac{k}{1+{{x}^{2}}}}\,\,dx=1
\Rightarrow 20k1+x2dx=12\int_{0}^{\infty }{\frac{k}{1+{{x}^{2}}}}\,\,dx=1
\Rightarrow 2k(tan1x)0=12k\,({{\tan }^{-1}}x)_{0}^{\infty }=1
\Rightarrow 2k(tan1tan10)=12k({{\tan }^{-1}}\infty -{{\tan }^{-1}}0)=1
\Rightarrow 2k(π20)=12k\left( \frac{\pi }{2}-0 \right)=1
\Rightarrow k=1πk=\frac{1}{\pi }